
Annulus: A Dual Congestion Control Loop for Datacenter and
WAN Traffic Aggregates

Ahmed Saeed♦, Varun Gupta†, Prateesh Goyal♦, Milad Sharif‡, Rong Pan§, Mostafa Ammar♥,
Ellen Zegura♥, Keon Jang♠, Mohammad Alizadeh♦, Abdul Kabbani♣, Amin Vahdat♣

♦MIT CSAIL, †AT&T, ‡SambaNova, §Intel, ♥Georgia Tech, ♠MPI-SWS, ♣Google

ABSTRACT
Cloud services are deployed in datacenters connected though high-
bandwidth Wide Area Networks (WANs). We find that WAN traffic
negatively impacts the performance of datacenter traffic, increasing
tail latency by 2.5×, despite its small bandwidth demand. This
behavior is caused by the long round-trip time (RTT) for WAN
traffic, combined with limited buffering in datacenter switches. The
long WAN RTT forces datacenter traffic to take the full burden of
reacting to congestion. Furthermore, datacenter traffic changes on
a faster time-scale than the WAN RTT, making it difficult for WAN
congestion control to estimate available bandwidth accurately.

We present Annulus, a congestion control scheme that relies on
two control loops to address these challenges. One control loop
leverages existing congestion control algorithms for bottlenecks
where there is only one type of traffic (i.e., WAN or datacenter).
The other loop handles bottlenecks shared between WAN and data-
center traffic near the traffic source, using direct feedback from the
bottleneck. We implement Annulus on a testbed and in simulation.
Compared to baselines using BBR for WAN congestion control and
DCTCP or DCQCN for datacenter congestion control, Annulus
increases bottleneck utilization by 10% and lowers datacenter flow
completion time by 1.3-3.5×.

CCS CONCEPTS
• Networks→ Transport protocols; Data center networks.

KEYWORDS
Congestion Control, Data Center Networks, Wide-Area Networks,
Explicit Direct Congestion Notification

ACM Reference Format:
Ahmed Saeed, VarunGupta, PrateeshGoyal,Milad Sharif, Rong Pan,Mostafa
Ammar, Ellen Zegura, Keon Jang, Mohammad Alizadeh, Abdul Kabbani,
Amin Vahdat. 2020. Annulus: A Dual Congestion Control Loop for Datacen-
ter and WAN Traffic Aggregates. In Annual conference of the ACM Special
Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication (SIGCOMM ’20),
August 10–14, 2020, Virtual Event, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3387514.3405899

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7955-7/20/08.
https://doi.org/10.1145/3387514.3405899

1 INTRODUCTION
Large-scale cloud services are built on an infrastructure of dat-
acenters connected though high bandwidth wide area networks
(WANs) [24, 26, 27]. WAN traffic shares the datacenter network
with intra-datacenter traffic, with the ratio of datacenter to WAN
traffic typically around 5:1 [42]. Despite the small fraction of WAN
traffic, we find that its impact on datacenter traffic is significant
when both types of traffic are bottlenecked at the same switch. Stor-
age racks are an example of such scenarios. A single rack serves
applications both within its datacenter and in other datacenters.
High volumes of small requests sent to a single rack can generate
a large number of large responses, creating a bottleneck within
the datacenter that impacts both WAN and datacenter flows. In
production, we find that surges in WAN traffic originating from a
datacenter increase tail latency of datacenter traffic by 2.5× (§2.1).

To better understand this behavior, consider that congestion con-
trol algorithms take a round-trip time (RTT) to react to changes in
available bandwidth. When WAN and datacenter traffic are bottle-
necked together, a datacenter flowwill react to congestion hundreds
of times before a WAN flow receives even its first feedback signal.
Therefore, datacenter traffic takes the full burden of slowing down
in response to congestion. WAN flows, on the other hand, build
up long queues before their congestion control algorithms react,
leading to packet drops and increasing latency for datacenter traf-
fic. The behavior is exacerbated by datacenter congestion control
algorithms that attempt to keep queues short [31, 34, 50].

WAN flows also suffer throughput loss due to the large variations
in bandwidth caused by datacenter traffic, and the very small buffers
in datacenter switches. Congestion control algorithms typically
need buffering proportional to the bandwidth-delay product (BDP)
of a flow to achieve high throughput [25], but datacenter switches
have 1-2 orders of magnitude less buffer than the typical BDP of a
WAN flow. The industry trend in recent years has been increasing
link speeds (e.g., from 10 Gbps to 400 Gbps), while buffer sizes have
stagnated (12 MB to 72 MB) [3, 10, 12, 35]. Buffer size requirements
can be reduced for large numbers of flows [9] and by using better
congestion control algorithms (e.g., DCTCP requires only 17% of
BDP for high utilization [7]). However, competition between WAN
and datacenter traffic creates significant challenges for WAN flows
bottlenecked at shallow-buffered switches. Datacenter traffic is
bursty and can create large fluctuations in bandwidth over sub-
millisecond timescales. Since these fluctuations occur on a timescale
much smaller than the WAN RTT, WAN flows cannot accurately
track the available bandwidth without excessive buffering.

With shallow-buffered switches, even sophisticated buffer shar-
ing or traffic isolation mechanisms cannot address the previous
challenges. Buffer sharing techniques [36] allow a congested port to

1

https://doi.org/10.1145/3387514.3405899
https://doi.org/10.1145/3387514.3405899

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA A. Saeed et al.

grab a bigger share of a switch’s total buffer, but the huge discrep-
ancy between the amount of buffering available and what is needed
byWAN flows makes these schemes less effective in our setting. Iso-
lating datacenter and WAN traffic in separate queues can improve
the performance of datacenter traffic. However, traffic isolation
does not reduce bandwidth variability caused by datacenter traffic
which negatively impacts the performance of WAN traffic. It also
does not resolve the root cause of poor performance for WAN flows:
the lack of adequate buffering relative to their BDP. Furthermore,
datacenter switches have a small number of queues (e.g., 4-12 pri-
ority queues per port [3]), which are typically allocated to different
traffic classes based on application and business requirements. To
isolate datacenter and WAN traffic, we need two queues instead of
one for each traffic class, wasting an already scarce resource.

Our insight is that fast reaction to congestion is necessary to remedy
performance impairments of WAN traffic that shares a bottleneck with
datacenter traffic. Fast reaction to congestion allows WAN traffic
to adapt to fast changes in available bandwidth caused by demand
variations of datacenter traffic. Further, it effectively reduces the
BDP of WAN flows by several orders of magnitude, dramatically
lowering their buffer requirements. There are several approaches
to speedup reaction to congestion including. For instance, a bot-
tleneck can generate explicit congestion notification messages to
the sender [1, 40]. Another example is performing congestion on a
per-link basis [33] or terminating and restarting connections using
proxies, where congestion control is performed independently for
different parts of the path [13].

One approach to building a scheme for improving the interac-
tion between WAN and datacenter traffic could be to propose a
new “one-size-fits-all” algorithm that works for both WAN and
datacenter flows. Such a protocol would have to replace deployed
algorithms that have undergone years of fine-tuning (e.g., DCQCN,
TIMELY, HPCC, CUBIC, and BBR), and would likely face significant
resistance to adoption (especially in the WAN). We take a more
pragmatic approach. We design a solution that resolves perfor-
mance impairments of WAN and datacenter traffic by augmenting
existing WAN and datacenter protocols, imposing no limitations
on their design. Moreover, we avoid making any changes to the
network infrastructure (e.g., deploying proxies), requiring only
minimal changes to the software stack of traffic sources.

In this paper we explore using direct feedback from switches,
where datacenter and WAN traffic compete, to tackle the discussed
challenges. When a datacenter switch experiences congestion, it
sends a direct feedback signal to the senders of both datacenter
and WAN flows. A direct signal reduces feedback delay by several
orders of magnitude forWAN flows, thereby enabling these flows to
react quickly to congestion. Direct feedback is effective only when
it reduces delay feedback compared to mirrored feedback. Hence,
approaches relying on direct feedback can improve performance
compared to end-to-end approaches when the congestion occurs
near the traffic source, which we show to be a common case in
production settings. Providing direct feedback to both datacenter
and WAN flows helps ensure fairness in the way they react.

We present Annulus, a congestion control system designed to
handle the mixture of WAN and datacenter traffic. Annulus sources
rely on two control loops to deal with two different types of con-
gestion events: (1) congestion at nearby datacenter switches (e.g.,

ToRs) configured to send direct feedback; (2) congestion at other
WAN or datacenter switches that do not send direct feedback. In
the first case, Annulus reacts to the direct feedback signal using a
“near-source” control algorithm, reducing reaction delay to near-
source congestion. In the second case, it relies on an existing WAN
or datacenter congestion control algorithm. Our design addresses
two challenging aspects of such a dual control-loop protocol: the
design of the near-source control algorithm (§3.2) and how it should
interact with existing congestion control algorithms (§3.3).

We implement Annulus in a userspace network processing stack
(§4). For direct feedback, we rely on the existing Quantized Conges-
tion Notification (QCN) [1] mechanism, supported on most com-
modity datacenter switches. We evaluate the Annulus implemen-
tation on a testbed of three racks, two in one cluster, and one in
separate cluster, connected by a private WAN. In the testbed, we
compare Annulus to a setup where DCTCP is used for datacenter
congestion control and BBR is used for WAN congestion control.
We find that Annulus improves datacenter traffic tail latency by
43.2% at medium loads, and by up to 56× in cases where the majority
of traffic at the bottleneck is WAN traffic. Annulus improves fair-
ness between WAN and datacenter flows and supports configurable
weighted fairness. We also find that Annulus improves bottleneck
utilization by 10%. In simulations, we compare Annulus to TCP
CUBIC, DCTCP, and DCQCN under various workloads. We find
that Annulus reduces datacenter flow completion time by up to
3.5× and 2× compared to DCTCP and DCQCN, respectively. It also
improves WAN flow completion time by around 10% compared to
both DCTCP and DCQCN.

This work does not raise any ethical issues.

2 MOTIVATION
In this section, we explore the interaction of datacenter and WAN
traffic at their shared bottlenecks. We start by observing their inter-
action in a production environment at a large-scale cloud operator,
showing that surges in WAN demand lead to performance degra-
dation in datacenter tail latency. We use simulations to validate
that the performance degradation of datacenter and WAN persists
regardless of the congestion control algorithm, congestion signal,
and scheduling scheme at the switch. We find that performance
degradation occurs due to the large delay of WAN congestion feed-
back, exacerbated by the limited buffer space in datacenter switches.
Long delays in WAN feedback lead to two fundamental issues: 1)
datacenter traffic reacts much faster, taking the full burden of slow-
ing down to drain the queues while facing long queues caused by
the slow reacting WAN traffic, and 2) feedback for the WAN traffic
lags behind changes in capacity, making it difficult for the WAN
congestion control to track available bandwidth accurately. This
leads to either under utilization or more queuing. We show that a
direct signal from the bottleneck switch to the traffic source can
improve the performance of both WAN and datacenter compared
to other approaches.

2.1 Interaction of WAN and Datacenter Traffic
in the Wild

We collect measurements from two production clusters at a large
cloud operator, over the period of a month. We record throughput,

2

Annulus: A Dual Congestion Control Loop SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

 0.2
 0.4
 0.6
 0.8

 1

Day 1 Day 2

N
o

rm
a

liz
e

d
T

h
ro

u
g

h
p

u
t

Time

(a) Normalized aggregate throughput of WAN traffic initiated from
studied cluster

 50
 100
 150
 200
 250
 300
 350
 400

Day 1 Day 2

L
a

te
n

c
y
 (

u
s
)

Time

Median 95%-tile 99%-tile

(b) Aggregate latency for intra-cluster traffic

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

Day 1 Day 2

D
ro

p
 r

a
te

(%
/s

e
c
)

Time

(c) Aggregate drop rate at ToR uplinks

Figure 1: Analysis of the impact ofWAN traffic ondatacenter
traffic from Cluster 1 over two days. All figures capture the
same period.

averaged over periods of five minutes, and end-to-end Remote Pro-
cedure Call (RPC) latency, averaged over periods of twenty minutes.
Both measurements are collected at end hosts and aggregated over
all machines in the clusters. Thus, we collect data at a relatively
low frequency in order to avoid interfering with server operations
in terms of both processing and storage. We classify throughput
measurements into WAN (i.e., traffic exiting the cluster)1 and dat-
acenter (i.e., traffic that remains in the cluster). Furthermore, we
collect drop rates at switches, averaged over five minutes, to deter-
mine the bottleneck location and severity. We correlate end-host
measurements with switch measurements. WAN and datacenter
traffic both use the same priority group and compete for the same
buffer space. For congestion control, WAN Traffic uses TCP BBR
while datacenter traffic uses DCTCP. The total traffic load in both
cluster is stable over the period of two days, with average load
being 87% of the maximum load.

We focus on measurements collected over the period of two days
in Cluster 1 (Figure 1). The WAN load varies significantly over the
two days (Figure 1a), dropping to 20% of its maximum. As clear from
Figures 1a and 1b, there is a strong correlation between changes in
WAN demand and the 99th percentile of RPC latency of datacenter
traffic. Surges in demand by WAN traffic lead to 2.5× increase in
tail latency of datacenter RPCs, with a correlation coefficient of

1In this paper, we focus on WAN traffic existing the datacenter as we observe it to be
the likely to compete with datacenter traffic.

 0
 50

 100
 150
 200
 250
 300

 0 50 100 150 200 250 300 350 400
 0

 4

 8

 12

D
em

an
d

(G
bp

s)

Q
ue

ue
 S

iz
e

(M
B)

Time (microseconds)

Queue Size
DC Demand

WAN Demand

DC Burst

WAN Reaction

RTT

Figure 2: WAN flows start reacting to a burst in demand
much later than the burst had occurred and datacenter flows
have already reduced their rate.

0.8 between the two values. We find that drop rates are zero in
all topology stages except at ToR uplinks (i.e., links connecting
ToR switches to higher stages in the topology). We also observe no
persistent bottlenecks in the rest of the path of WAN traffic. ToR
uplinks are the first oversubscription point on the traffic originating
from the cluster. Figure 1c shows a strong correlation between drop
rate at ToR switches and WAN traffic behavior with a coefficient
of 0.79. In Cluster 2, the correlation coefficients between WAN
traffic and tail latency of datacenter RPC and drops at the ToR are
0.54 and 0.64, respectively. We also found that such behavior can
persist for a month in one of the clusters. More figures are shown
in Appendix B.

2.2 Causes of Performance Impairments
Long feedback delay of WAN flows is the crux of performance impair-
ments observed in production clusters. First, consider the case where
WAN and datacenter flows share the same buffer. Both WAN and
datacenter congestion control aim at minimizing the occupancy of
the shared buffer. However, WAN traffic reacts to congestion 10-
10,000× later than datacenter traffic due to the difference in RTTs.
Thus, datacenter flows will react and keep reacting to the buffer
buildup caused by the inaction of the WAN flow, leading to long
delays and potentially packet drops for datacenter traffic. Figure 2,
based on simulations we present in the next section, illustrates this
issue. The figure shows aggregate WAN demand, aggregate data-
center demand, and buffer occupancy. When datacenter demand
surges, buffer occupancy increases. Datacenter traffic reacts quickly
to buffer buildup and drains the queues. WAN reacts after an RTT
(200 microseconds), after the queues have been drained.

A potential approach to improve the performance of datacenter
and WAN traffic is to isolate them in separate queues at the switch.
Isolation at the switch requires careful tuning of scheduling algo-
rithms and allocation of buffer space through buffer carving; this in
itself is limiting and wasteful (Appendix A). Still, even when used
successfully, isolation leads to performance improvements only for
datacenter traffic. The reason is that isolation does not address the
fundamental root cause of performance problems for WAN traf-
fic: the long feedback delay and the shallow buffers of datacenter
switches. Congestion control algorithms typically need buffering
proportional to the BDP to achieve high throughput [25], but data-
center switches have 1-2 orders of magnitude less buffer than the
typical BDP of a WAN flow. For example, the classic buffer sizing
rule of thumb [9] for New Reno suggests that a single TCPNewReno
flow requires one BDP of buffer space to sustain 100% throughput.
This amounts to 125MB for a 20ms RTT and bandwidth of 50 Gbps.
Of course, the buffer requirement drops in the presence of more

3

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA A. Saeed et al.

DC Latency

WAN Throughput
Direct
Signal

HPCC
HPCC

NewReno
DCTCP
FIFO

DCTCP/DCQCN
DCTCP/DCQCN
Carving+WRR

DCTCP/DCQCN
DCTCP/DCQCN
FIFO

 Better

Figure 3: Summary of results for different configurations
(WAN congestion control, DC congestion control, and buffer
scheduling schemes).

flows and with less synchronization [9]. It can also be reduced by
relying on better congestion control algorithms (e.g., DCTCP [7]).
Nonetheless the mismatch between the amount of buffer required
and that available in datacenter switches is large. For example, the
Broadcom Trident II has only 12MB of buffer [10, 12, 35] which
must be shared among all ports (and both datacenter and WAN
traffic).

The relationship between buffer requirement and BDP is a known
issue when designing WAN congestion control algorithms. How-
ever, the problem is worse when WAN traffic is competing for
bandwidth with datacenter traffic, even when isolated at the switch.
Buffer sizing rules relating BDP to buffer space requirements typi-
cally assume a fixed capacity bottleneck link [7, 9]. For WAN flows,
the datacenter traffic breaks this assumption since it causes wide
fluctuations in available bandwidth. These fluctuations occur at a
timescale that is significantly smaller than the RTT of WAN flows.
For instance, in a single WAN RTT of 20 milliseconds, thousands of
datacenter flows can start and finish. This large variability makes
it difficult for WAN flows to accurately track available bandwidth,
leading to under utilization when they understand the bandwidth,
or excessive buffering when they overestimate it. This would not
be a major issue if WAN flows were allocated enough buffer space
at the bottleneck, which is not feasible in datacenter switches.

2.3 A Closer Look at Interaction of WAN and
Datacenter Traffic

In this section, we show that causes of performance degradation
discussed earlier are fundamental to bottlenecks shared by WAN
and datacenter traffic. We use simulations of various configurations
(i.e., congestion control algorithm and buffer scheduling schemes).
Our goal is to move from basic configurations to more sophisticated
ones, understanding the behavior of each type of traffic with bet-
ter reaction to congestion and added isolation. This methodology
allows us to demonstrate and understand performance issues in
easy to understand settings (e.g., using well understood algorithms
like NewReno and DCTCP going through a tail drop buffer). Then,
we show that similar issues persist as we use more complicated
schemes (e.g., using buffer carving for DCQCN and DCTCP traffic).

We use TCP NewReno and DCTCP for WAN congestion control
for long WAN RTT and DCQCN and HPCC for short WAN RTT.
We use DCTCP, DCQCN, and HPCC for datacenter congestion con-
trol. Note that we consider BBR in the previous section as well as our
evaluation. At the switch, we use buffer sharing where both types
of traffic belong to the same priority group, compete for the same

 0
 10
 20
 30
 40
 50

NewReno DCTCP DCTCP
Isolated

Direct
Signal

A
v
g

.
W

A
N

 F
lo

w
T

h
ro

u
g

h
p

u
t

(G
b

p
s
)

Figure 4: Average throughput of WAN flows.

buffer space, and are FIFO-scheduled. We also consider configura-
tions where WAN and datacenter traffic are isolated through buffer
carving combined with weighted round robin scheduling; this is
referred to as as “Isolated” in figures. We use Flow Completion
Time (FCT) to evaluate datacenter traffic performance and average
throughput for WAN traffic. Figure 3 shows a summary sketch of
the performance of all explored schemes.

We perform NS3 [41] simulations of a datacenter rack with 10
machines each connected with a 50 Gbps link to the ToR switch. The
ToR switch is connected to the rest of the network through a single
100 Gbps link, creating a 5:1 oversubscription ratio. Datacenter
traffic originates from 8 machines, with an overall average load
of 40 Gbps, and flow sizes sampled from the distribution reported
in [42]. The two remaining machines generate a single long WAN
flow, each. Datacenter RTT is 8 microseconds while WAN RTT
is 20 milliseconds. The only bottleneck in the path of WAN and
datacenter traffic is the ToR uplink, where the ToR switch has 12MB
of buffers. The ECN marking threshold triggers with parameters
Kmin = 200KB and Kmax = 800KB. We use the implementation of
the authors of DCQCN and HPCC.

Ideally, the datacenter traffic should use 40% of the ToR uplink,
maintaining low FCT. WAN flows should consume the rest of avail-
able bandwidth achieving an aggregate of 60 Gbps (average of 30
Gbps for two flows). We normalize the FCT of datacenter traffic
for each scenario by its performance when it is using the network
exclusively. We use the 30 Gbps average throughput as the ideal
throughput for WAN traffic.

NewReno/DCTCP on FIFO queues: We start with the basic
case where WAN traffic uses NewReno and datacenter traffic uses
DCTCP. We configure NewReno to have an initial window than can
achieve full link utilization so as to avoid its slow ramp up. Both
types of traffic share buffer space. This combination represents the
worst case scenario, with WAN flows building queues and only
reacting to drops and datacenter flows waiting in long queues
behind WAN traffic. Spikes in demand by datacenter traffic reduce
bandwidth available to WAN. Due to large delays in WAN feedback,
a long queue of WAN packets build up which easily exceeds the
available buffer space in the switch, leading to drops and increase in
datacenter FCT. Average WAN flow throughput is 1.2% of the ideal
throughput, due severe window reduction by NewReno (Figure 4).
Tail datacenter small flow completion time increases 7× compared
to ideal throughput, due to the long queues (Figure 5).

ImprovingWAN congestion control: To overcome the severe
reaction of NewReno, we employ a DCTCP for WAN congestion
control. DCTCP has the advantage of modulating its reaction based
on the severity of the congestion, similar to BBR v2 [17]. This
allows it to require significantly less buffering than NewReno (17%
of BDP compared to a full BDP). DCTCP significantly improves

4

Annulus: A Dual Congestion Control Loop SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

 0
 1
 2
 3
 4
 5
 6
 7
 8

NewReno DCTCP DCTCP
Isolated

Direct
Signal

N
o

rm
a

liz
e

d
 F

C
T

Flows ≤ 10KB
Flows > 10KB

Figure 5: 99th Percentile FCT of datacenter flows.

 0

 1

 2

 3

 4

DCQCN DCQCN
Isolated

Direct
Signal

N
o

rm
a

liz
e

d
 F

C
T

Flows ≤ 10KB
Flows > 10KB

Figure 6: 99th Percentile FCT of datacenter flows when com-
peting with short RTT WAN flows.

WAN throughput to only be 76% of the ideal throughput (losing
only 24% of maximum throughput). However, the performance of
datacenter traffic remains poor (similar to the previous scenario),
due to long queues incurred by WAN flows and their slow reaction
to changes in available bandwidth.

Adding buffer carving and scheduling at the switch: In the
previous configuration, WAN traffic occupies most of the switch
buffer space, leading to significant delay for datacenter traffic. Thus,
in this configuration, we allocate buffer space at the switches such
that datacenter traffic achieves its ideal performance and observe
the performance of WAN traffic under such allocation. In particular,
we configure the switches to allow WAN traffic to use a maximum
of 25% of buffer space and use weighted round robin scheduling,
providing datacenter traffic 4× the weight of WAN traffic. This
scheme improves the performance of datacenter flows dramatically,
leading to performance comparable to the baseline for both short
and long flows (Figure 5). However, the performance of WAN traffic
degrades, leading to average WAN throughput to be 13% of the
ideal throughput (losing 87% of maximum possible throughput).
This is caused by the large variability in available bandwidth for
WAN traffic (esp. since the scheduling policy at the switch favors
datacenter traffic), and the limited buffer space available for the
WAN traffic.

WAN flows with short RTT: The problem is not limited to
scenarios where WAN flows have long RTTs. We establish this
fact by considering scenarios where WAN RTT is fairly small (e.g.,
inter-datacenter network within the same metro). We configure
WAN RTT to be 200 microseconds. This short RTT allows us to
use higher precision congestion control algorithms (i.e., HPCC
and DCQCN) for WAN traffic, with the same configurations used
in datacenter cases. When using DCQCN, the behavior of both
WAN and datacenter traffic is similar in both small and large RTT
settings. In particular, sharing buffer space leads to degradation in
both WAN and datacenter performance where WAN throughput is
33% lower than ideal throughput and datacenter FCT is reduced by
up to 3× (Figure 6). When isolated, DCQCN improves datacenter
performance to baseline, while WAN performance degrades by 78%.
HPCC reacts to overall buffer occupancy and rate at the bottleneck,
complicating attempts for isolation at the switch (Appendix C).

In summary, improvements in congestion control algorithms and
buffer management and isolation schemes can improve the inter-
action of WAN and datacenter traffic, compared to basic schemes.
However, long tail latency for datacenter traffic and poor WAN
throughput persist as long as both types of traffic share buffer
space. The main culprits are the long feedback delay of WAN con-
gestion control and the small buffer space in datacenter switches.
The long delays mean that when available bandwidth decreases,
a burst of WAN traffic has to be buffered at the bottleneck. This
leads to long queues, increasing tail latency of datacenter traffic.
Further, the limited buffer space at datacenter switches means that
a WAN burst is mostly dropped because WAN BDP is much larger
than available buffer space, leading to low WAN throughput.

2.4 Value of Direct Signals
A direct signal reduces feedback delay, leading to smaller BDP and
consequently lowers buffer requirements. Furthermore, a direct
signal provides a more recent view of the bottleneck, allowing for
a more accurate tracking of available bandwidth (i.e., by avoiding
bursts that exceed available capacity). Thus, direct feedback-based
schemes can reduce tail latency of datacenter traffic and increase
the throughput of WAN traffic. We develop a proof-of-concept
implementation of a direct signal, presenting the full design of An-
nulus in the next section. The signal is generated based on the same
rule that determines ECN marking of packets in DCTCP. A flow
source reacts to the fast signal by halving its current transmission
rate. It increases its rate again using similar rules as DCQCN. We
implement this signal in the simulation setup presented above. The
direct signal-based scheme provides the best compromise for WAN
and datacenter performance, compared to schemes we presented
earlier. In the case of long WAN RTT, it provides average WAN
throughput that is 10% higher than ideal throughput, as due to
random behavior of traffic generator utilization was slightly lower
than 40%. Datacenter traffic achieves similar performance to the
baseline for large flows, while achieving tail latency for small dat-
acenter flows that is only 14% worse than the baseline. Another
benefit of direct signals is that it can improve the performance of
purely WAN traffic that is congested at a near-source datacenter
bottleneck (§5.1.2).

There are several proposals for congestion control algorithms
that rely on direct signals [1, 40, 48]. However, they typically require
support from all switches, limiting their applicability (especially
in the WAN). Furthermore, QCN as a standalone solution requires
routing L2 packets through IP-routed datacenter networks which
presents a significant overhead [1, 50]. Our approach requires only
near-source switches to support direct QCN feedback (e.g., ToR
which our measurements found to be the most bottlenecked). This
allows for low-cost deployment relying on existing feedback signal.
It also simplifies routing of QCN messages (§4). Another approach
to solve the problem is to terminate flows when they exit and en-
ter the datacenter, making all flows datacenter flows within the
datacenter. This approach requires modification to the datacen-
ter infrastructure to add such proxies at scale that support WAN
demand. This approach is too costly compared to our proposal.

5

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA A. Saeed et al.

SourceDatacenter
Destination

WAN
Destination

Data
End-to-End
Feedback

Explicit Network
Feedback

Datacenter
Network

WAN

Figure 7: Feedback in Annulus.

3 ANNULUS DESIGN
Annulus is a dual control-loop congestion control system. It is a
software only solution that requires no hardware modifications to
existing NICs or switches. It employs direct feedback from only
near-source switches, where datacenter and WAN traffic are likely
to compete, leaving congestion control of other bottlenecks to be
handled by their respective WAN or datacenter congestion control
schemes. In particular, Annulus, as suggested by its name, the
following control loops (Figure 7):
• End-to-end control loop: This control loop relies on existing
congestion control algorithms to handle congestion that occur
deep in the traffic path (i.e., not close to traffic sources where
WAN and datacenter traffic mix).

• Near-source control loop: This control loop relies on congestion
notification from switches near the source (e.g., ToR switches) to
adjust its sending rate. This allows WAN and datacenter traffic
to adjust their rate at the same time granularity, significantly
improving WAN reaction time.
Annulus simply picks the minimum transmission rate of the two

control loops. By relying on the minimum rate, Annulus makes a
flow transmit at the rate accommodating the hopwith least available
capacity in the flow’s path. When bottlenecks change for a specific
flow, Annulus receives feedback signal from the new bottleneck
reducing the rate of its respective loop, while the other control loop
ramps up its rate due to lack of congestion signals.

3.1 Annulus Design Rationale
Annulus design has the following goals:
1) Performance at homogeneous bottlenecks (i.e., purelyWAN
or datacenter traffic) should remain at current standards.Dat-
acenter and WAN traffic should retain the performance of the state-
of-the-art algorithm they are currently using when the bottleneck
is not shared. We aim to design an algorithm that resolves the is-
sues presented in the previous section without impacting network
performance for other, more common, types of bottlenecks.
2) Low switch overhead and preferably no switch modifica-
tions. Solutions requiring sophisticated behavior at switches are
becoming more feasible [14]. However, a significant portion of cur-
rent infrastructure does not support such programmability. Thus,
it is preferable that the proposed approach does not introduce sig-
nificant modifications to switches, if any.

Annulus design as a dual control-loop system does not constraint
how homogeneous bottlenecks are controlled. We satisfy the first

requirement by allowing existing algorithms to work in tandem
with the near-source congestion control loop. The second require-
ment can be satisfied by relying on the QCN direct signal which part
of IEEE 802.1Qau [1], implemented in many commodity datacenter
switches. Generating more accurate signals might require switch
modifications. However, the crux of our proposal is that a direct
signal reduces feedback delay, leading to lower buffer requirements
and more accurate estimation of available bandwidth.

3.2 Near-Source Congestion Control Loop
The near-source control loop has three components: 1) generation
of the direct signal, and 2) rate control at the source.

Direct Signal Generation: We rely on QCN Congestion No-
tification (CN) messages as the direct signal from switches, in-
dicating congestion. A switch maintains a congestion measure
Fb = (Q − Qeq) + w · (Q − Qold), where Q is the instantaneous
queue size,Qeq is the target queue size,Qold is the queue size when
Fb was last calculated, andw is a non-negative constant which is
typically set to 2. The intuition is that Fb captures the queue-size
excess (Q −Qeq) and the derivative of the queue size (Q −Qold).
Hence, positive Fb means that either the buffer or the link are
oversubscribed, indicating congestion.

The congestion measure Fb is calculated based on the state of
the queue when a incoming sample packet arrives. Packets are
sampled by selecting packets periodically everyM arriving bytes,
whereM depends on Fb .2 If the congestion measure is positive, a
CN message is generated and sent to the source of the sampled
packet. The CN message contains the Fb value. The CN can also
include 64 bytes of the sampled packet, which is not part of the
standard but implemented by some commodity switches. These 64
bytes are enough to identify the flow that sent the packet at the
end host, as it includes the source and destination IPs and ports,
mitigating one of the main drawbacks of QCN reported in [50].

Rate Control: The “near-source” control loop follows similar
rules to that of Reaction Point in the QCN algorithm. We remove
the details for brevity and refer interested readers to [37]. The main
differences between Annulus and the QCN reaction point, is that
Annulus is fully implemented in software, relying on ACK-clocking
for rate increase. The standard QCN algorithm relies on a mix of
timers and byte counters to increase the transmission rate. However,
relying on counters can lead to oscillation of the transmission rate
of WAN traffic as rate increases based only on the senders behavior
and decreases based on feedback from the near-source bottleneck.
Thus, we rely on ACK-clocking, where rate increases on ACKs,
rather than based on byte counters or timers. This approach also
helps simplify the implementation.

WindowvsRate:Window-based congestion control algorithms
provide robustness to feedback delay by limiting the number of
packets in flight to a maximum of the window size. This provides
more robustness to congestion as the sender stops sending packets
when it has a window worth of packets in flight. Rate-based algo-
rithms keep sending at a specific rate and only slow down when
they receive feedback. Despite the advantages of a window-based
algorithm, the near-source control loop has to employ a rate-based
algorithm. A window controls the number of packets in flight along

2The mapping between M and Fb is shown in [37].

6

Annulus: A Dual Congestion Control Loop SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

Algorithm 1 Annulus Sender Algorithm. Each Flow F maintains two data struc-
tures for each control loop: End to End (E2E) and Near Source (NS). Each loopmaintains
a current rate and Annulus selects the minimum rate. EndToEndCCAlg is the existing
end-to-end window-based congestion control algorithm. NearSourceCCAlg is the
near-source congestion control algorithm that reacts to QCN messages.

1: procedure EndToEndRateCalc(Flow F)
2: if F.E2E.currentRate < F.minRate × 2 then
3: F.E2E.currentWindow = EndToEndCCAlg(F);
4: F.E2E.currentRate = F.E2E.currentWindow × F.RTT;
5: end if
6: return ;
7: end procedure
8: procedure NearSourceRateCalc(Flow F)
9: if F.NS.currentRate < F.minRate × 2 then
10: F.NS.currentRate = NearSourceCCAlg(F);
11: end if
12: return ;
13: end procedure
14: procedure Annulus(Flow F)
15: EndToEndRateCalc(F);
16: NearSourceRateCalc(F);
17: F.minRate = min(F.NS.currentRate, F.E2E.currentRate);
18: return
19: end procedure

the whole path. The near-source control loop manages only a part
of the path, requiring a window-based implementation to know the
packets in flight within only that part of the path. This is not possi-
ble in modern networks as it requires per-packet acknowledgement
from every hop in the path, leaving a rate-based implementation
as the only viable solution. The drawback of rate-based algorithms
is alleviated by relying on a direct signal because it allows for fast
reaction to congestion.

3.3 Combining the Two Control Loops
Combining Windows and Rates: The end-to-end control loop
can use either a window-based algorithm or a rate-based algo-
rithm. The near-source control loop is rate-based. Thus, the overall
algorithm is rate-based. Annulus chooses the minimum rate by
converting the window set by the end-to-end control loop to a rate
by dividing it over the RTT estimate, kept by all modern congestion
control algorithms.

Utilization vs Cautious Probing: Each control loop manages
congestion at a subset of a flow’s path. The bottleneck in the path
can change from the part of the pathmanaged by one control loop to
the other. This requires some coordination between the two control
loops to improve the performance of Annulus. First, consider if
the two control loops are uncoordinated. Each control loop sets
its transmission rate independently of one another, R1 of control
loop C1 and R2 of control loop C2. Annulus picks the smaller rate,
say R1, to accommodate the smaller bottleneck. In the absence of
cross traffic at hops managed by C2, it does not get any feedback
and keeps increasing R2. This increase has no effect on the actual
transmission rate of the flow (Annulus is sending at R1). Hence,
C2’s view of the network is distorted by the lack of feedback. In
the presence of cross traffic, C2 gets feedback corresponding to a

Share at
near-source
congestion

Share at deep
in-network
congestion

Time

R
at

e

Rate of Near-source
CC loop

Rate of end-to-end
CC loop

(a) Behavior of the two loops if
uncoordinated, which can result
in loss

Time

R
at

e

Share at
near-source
congestion

Share at deep
in-network
congestion

Rate of both loops
track the bottleneck

(b) Behavior when both loops are
coordinated

Figure 8: Illustration of the impact of control loop coordina-
tion on Annulus rate behavior.

much higher rate than it should be operating at if it was to share
the bottleneck fairly with cross traffic (§D). This inaccurate rate
estimate by C2 can be problematic when the bottleneck moves to
the part of the path managed by C2 (e.g., the current bottleneck is
freed due to termination of flows). In that case, R1 starts to increase,
due to increased capacity for C1 bottleneck, C2 bursts at a very
large R2 which can take multiple RTTs to reduce to a reasonable
level. Figure 8a shows the behavior of the rates produced by the
two control loops when left uncoordinated.

To avoid bursting, the control loop setting the minimum rate
signals the other control loop to pause the growth of its window or
rate. For example, in the previous scenario, C1 signals C2 to pause
the growth of R2 to 2× R1 [20]. Furthermore, drops in the smaller
rate are signalled to trigger proportional drops in the rate set by the
other control loop. Figure 8b shows an illustration of the approach.
The rate always tracks the minimum available bandwidth, avoiding
exceeding the rate at the bottleneck. This avoids creating bursts
when bottlenecks shift between near-source and deep path. We
realize that this approach can lead to lower utilization in case the
congestion does not change in the larger control loop. However,
our goal is to avoid bursts or drops caused by the introduction of
the additional control loop.

Algorithm 1 illustrates how the two control loops are combined.

4 IMPLEMENTATION
Figure 9 shows the architecture of Annulus at the end host. Feedback
is obtained from both near-source switches and typical end-to-end
signals. We leverage existing kernel implementation of the end-to-
end control loop. This loop can be different depending on traffic
type (i.e., datacenter or WAN). The implementation of end-to-end
loops is modified so that each packet is tagged by a transmission
time that is calculated based on a pacing rate inferred from the
congestion window and RTT of its flow.3 The near-source control
loop is implemented in a userspace networking stack that captures
packets after being processed by the host kernel [32]. The near-
source loop keeps track of all active TCP connections and calculates
their transmission rate based on received messages, translating it
into a per-packet transmission time. The furthest timestamp in
the future is picked as it represents the lowest rate. A timestamp-
based rate limiter is used to schedule packet transmission [43].
The two control loops coordinate their rate growth, as discussed
earlier. Note that Annulus can still be implemented in a virtualized

3The implementation of BBR in Linux already supports this functionality.

7

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA A. Saeed et al.

End-to-End
Control Loop

Near-Source
Control Loop

Packets tagged with
End-to-End CC-based

timestamp

Time-based
Shaper

NIC

Annulus

Packet
sources

Coordination
signal

Packets tagged with
Near-source

CC-based timestamp

ECN, Loss,
or RTT estimate

QCN

Figure 9: Architecture of Annulus end host.

setting, requiring the guest network stack to at least tag packets
with their transmission time. This requires minimal changes to the
driver in the guest OS so it can pass the timestamp information.
Full functionality of Annulus requires the host OS to be able to
pause the rate growth of flows in the guest OS. Such coordination
between guest and host network stacks was shown to be beneficial
in other settings as well [29, 49].

Routing QCN messages: The main challenge of deploying
QCN is doing so at scale in an L3 routed network. To overcome
this issue, we leverage some standard, but limited switch features,
which makes deploying QCN feasible by focusing on congestion
that happen only close to the source (i.e., ToRs where WAN and
datacenter interaction is observed in practice). In particular, we
leverage the L2 learning feature available on any L3 commodity
switch today. L2 learning allows a switch to cache the source MAC
address of a packet along with the corresponding input switch port
number. The switch can then properly forward an L2 packet (e.g.
QCN notification frame) to a MAC address that has been already
cached through the corresponding cached port number. Today’s
data center switches typically have dedicated L2 tables, that cannot
be used for L3 entries. These tables can accommodate at the order
of 100,000 MAC entries. This is more than sufficient for maintaining
the cached MAC address of the sampled packet long enough before
its corresponding congestion control frame traverses back in the
reverse direction using the cached information.4

Hence, all that is needed for QCN’s notification packets to get
routed back to their L2 sources is preserving their L2 source MAC
address throughout the fabric (i.e. don’t over-write that value end-
to-end) and turning on L2 learning. Furthermore, we focus on
deploying QCN close to traffic sources (i.e., ToR). This reduces the
pressure on the memory. Thus, switches can continue to simulta-
neously routed IP packets based on the IP table information while
forwarding non-IP L2 frames based on the L2 table information
that gets populated based on the L2 header of IP packets. Note that
the available memory for L2 learning allows for deployment in

4The worst case here is when as many packets as the capacity of the L2 table arrive with
a different MAC address each at the highest speed (i.e. from all ports). Conservatively
assuming 100,000 L2 entries and a 16-port 40Gbps switch, with a 0.5KB average packet
size, it is impossible that an L2 cached entry could be evicted in less than 600µs from
the time it was added, which is much more than the round-trip time in any reasonably
designed data center today.

switches a level higher than ToRs in the topology, however, we
didn’t perform any experiments at that scale.

Note that routing QCN messages is a limitation of our imple-
mentation of Annulus. However, it is not a limitation of our design.
In fact, Annulus provides performance improvements even if con-
gestion occurs at switches connecting the datacenter to the WAN,
as we show in simulation. Thus, we hope that this work motivates
further development of direct signalling schemes whose messages
can be routed in current datacenter networks.

5 EVALUATION
We evaluate the performance of Annulus on a testbed as well as
using packet-level simulations in ns2 [2]. We compare the perfor-
mance of Annulus to DCTCP and BBR in the testbed and to TCP
CUBIC, DCTCP, and DCQCN in simulations. We evaluate Annulus
in scenarios of traffic mixes and pure WAN and datacenter traffic.
The testbed evaluation demonstrates the feasibility and value of
Annulus, while the simulations allow us to evaluate Annulus under
conditions that are hard to replicate in the testbed. Our main evalu-
ation metrics are RPC tail latency for datacenter traffic and transfer
latency and throughput for WAN traffic. This focus is because of
the typical drive to operate WAN traffic at near capacity [44, 47]
while datacenter traffic typically is more concerned with latency
[6, 31, 34, 50].

5.1 Testbed Evaluation
Setup: We conduct experiments on three racks, two co-located
in the same cluster with 20 machines each while the third is in a
different cluster with 10 machines, where RTT between the two
clusters is 8 ms. All machines are equipped with dual port 20 Gbps
NICs. We maintain control over path congestion by forcing con-
gestion to be at the ToR by setting a high oversubcription ratio
of 5:1 to ToR uplink, and operating in non-peak hours. We con-
figured QCN only at ToR switches. We set Qeq to 100KB per port
and aW of 8, where packets are samples every 15KB. Note that
while some figures label baselines as only DCTCP or BBR,
all testbed evaluation scenarios use DCTCP exclusively for
datacenter and TCP BBR exclusively for WAN.
Workload: We generate synthetic RPC loads. RPC sizes are set to
127KB unless otherwise stated. We use a cross-rack all to all commu-
nication pattern, where all machines in one rack send traffic to all
machines in another rack. This communication pattern generates
a large number of flows and allows for stress testing the behavior
of the congestion control algorithms. We generate three types of
workloads: 1) Datacenter/WANmixture with various mixture ratios,
2) edge caching traffic where the traffic is only WAN traffic, and
3) purely datacenter traffic that reflects the more common case in
cluster traffic. WAN traffic is generated by sending traffic from 10
machines in one rack in one cluster to 10 machines in the rack in
the other cluster, while datacenter traffic is generated by sending
traffic from 20 machines in one rack to 20 machines in another rack.

5.1.1 WAN/Datacenter Mix. We start by looking at overall perfor-
mance whenWAN and datacenter traffic are mixed. In this scenario,
we care about improving datacenter traffic isolation from WAN
traffic, while retaining WAN traffic performance.

8

Annulus: A Dual Congestion Control Loop SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

 0
 1500
 3000
 4500
 6000

 40 45 50 55 60 65 70 75 80

F
C

T
 (

u
s
)

Load (%)

Annulus
DCTCP

(a) 1:5

 100

 1000

 10000

 100000

 40 45 50 55 60 65 70 75 80

F
C

T
 (

u
s
)

Load (%)

Annulus
DCTCP

(b) 5:1 (logarithmic y-axis)

 0
 4000
 8000

 12000
 16000
 20000

 40 45 50 55 60 65 70 75 80

F
C

T
 (

u
s
)

Load (%)

Annulus
DCTCP

(c) 1:1

Figure 10: RPC latency of datacenter traffic for different
WAN:Datacenter traffic ratios.

Annulus DCTCP/BBR Max/Min Fair
Datacenter:WAN 5.8:1 1:7.6 4:1

Table 1: Ratio of achieved throughput under different
schemes.

Datacenter Latency: Figure 10 shows the measured perfor-
mance of 99th percentile RPC latency over datacenter. We find that
at common mixes of 5:1 datacenter to WAN, even at small loads
(i.e., 50%), latency is reduced by 43.2%. This is achieved without
observing any changes in WAN traffic performance. On the other
hand, in scenarios where traffic is more dominated by WAN traffic,
where the ratio is reversed (i.e., 1:5 in Figure 10b), Annulus results
in datacenter RPC latency that is 56x better at high loads. This is
also combined by 40% reduction in average WAN traffic latency.
Even in cases where traffic mix is even, we find that Annulus pro-
duces 2x improvements at 60% of bottleneck capacity. This shows
that, as intended, Annulus reduces the impact of WAN traffic on
datacenter traffic even at large shares of WAN traffic.

Fairness:We also perform experiments without forcing the traf-
fic ratio between datacenter and WAN to observe the result sharing
scheme when aggressive WAN congestion control interacts with
datacenter traffic. Table 1 shows the results of such experiments.
Annulus allows for a sharing policy that is proportional to the
number of flows (400 flows for datacenter and 100 flows for WAN).
Annulus can be used to provide different sharing ratios by changing
how aggressively different flows react to congestion at the near-
source bottleneck. This can be achieved by tuning the Gd value in
the QCN algorithm, reducing or increasing the aggressiveness of
the QCN control loop.

Bottleneck utilization: Experiments without forcing the traf-
fic ratio allows us to also observe the maximum achievable goodput,

Setting Annulus DCTCP/BBR
Datacenter/WAN mix 91.51% 86.63%

Datacenter 90.42% 82.13%
WAN 92.1% 83.28%

Table 2: Bottleneck utilization under different traffic mixes.

 0
 10
 20
 30
 40
 50

 0 0.25 0.5 0.75 1

R
T

T
 (

m
s
)

Time (Seconds)
(a) Annulus RTT

 0
 10
 20
 30
 40
 50

 0 0.25 0.5 0.75 1

R
T

T
 (

m
s
)

Time (Seconds)
(b) BBR RTT

 0

 160000

 320000

 480000

 0 0.2 0.4 0.6 0.8 1

B
y
te

s
 i
n

 F
lig

h
t

Time (Seconds)

Annulus
BBR

(c) Bytes in flight

Figure 11: Behavior of a single flow over the period of one
second showing bytes in flight and RTT for Annulus and
BBR.

 0
 10000
 20000
 30000
 40000

 40 50 60 70 80 90

A
v
e
ra

g
e

L
a
te

n
c
y
 (

u
s
)

Load (%)

Annulus
BBR

Figure 12: Transfer latency for pure WAN traffic.

summarized in Table 2. Annulus improves maximum achievable
goodput by 5-10%. To better understand this impact, we look at the
tcpdump for a single WAN flow over the period of a second. Fig-
ure 11 shows RTT and bytes in flights produced by both protocols.
We find that Annulus produces more stable behavior, maintaining
two segments in flight over the whole period while sustaining sta-
ble RTT between 10-13 ms by keeping the queues stable. On the
other hand, BBR produces a fluctuating RTT ranging from 9-48ms
which is caused by fluctuations in queue length. These fluctuations
cause drops which leads BBR to frequently back off, reducing its
goodput.

5.1.2 Edge Caching (purely WAN traffic). In this case, we only look
at the average latency of message transfer between ends as it better
reflects the requirements of edge caching applications. Figure 12
shows the results. Annulus reduces average latency by 26% at 70%
load and 80% at 90% load. It also improves latency by 2.2x at near
bottleneck capacity while improving goodput by 10% (Table 2).
5.1.3 Purely datacenter traffic. We validate that Annulus does not
cause regression in performance of datacenter traffic by comparing
it to DCTCP under the scenario where traffic is 100% datacenter. In
this experiment, we mix RPC load of small sized messages of 10KB
and large sized messages of 1MB. The goal of this experiment is
to show that Annulus does not introduce regression in the more
common case of purely datacenter traffic. Figure 13 shows the

9

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA A. Saeed et al.

 0

 500

 1000

 1500

 2000

 2500

 25 30 35 40 45 50 55 60 65 70

F
C

T
 (

u
s
)

Load (%)

Annulus
DCTCP

(a) Small flows FCT

 0

 10000

 20000

 30000

 40000

 25 30 35 40 45 50 55 60 65 70

F
C

T
 (

u
s
)

Load (%)

Annulus
DCTCP

(b) Large flows FCT
Figure 13: 99th percentile FCT for pure datacenter traffic.

tail FCT for both jobs where Annulus improves performance of
both jobs by up to 2.7x for the large RPC job at 70% utilization.
This improvement in performance can be explained by the faster
congestion signal.

5.2 Simulations Evaluation
Setup:We use the fat-tree network [30]. The fabric interconnects
128 servers organized into four pods. Each pod consists of four
aggregation switches and four top-of-rack (ToR) switches. Aggre-
gation switches are connected to eight core switches resulting in a
fabric with overall 4:1 oversubscription. Similar to Google’s Jupiter
architecture [45], the fabric is directly connected to the inter-cluster
networking layer with an external cluster border router. Each pod
is provided with a pool of 25% of aggregate intra-cluster band-
width [45] for external connectivity. We use 10Gbps point-to-point
Ethernet links across our entire network. All the switches in the
topology have a per-port buffer capacity of 1MB. We also configure
the host delay and intra-datacenter switching delay to be 1µs and
2µs, respectively. Thus, the minimum RTT between two servers on
different pods of a datacenter is 14µs. In order to incorporate the
effect of long RTT of inter-datacenter traffic, we set the propagation
delay of the links connecting hosts to the external switch to 10ms ,
resulting in RTT of roughly ∼ 20ms for datacenter-edge traffic.
We use ECMP as our multipath routing scheme unless mentioned
otherwise.
Implementation:We compare Annulus to TCP CUBIC, DCTCP,
and DCQCN. DCTCP leverages ECN to convey congestion informa-
tion to the end hosts and adjusts the congestion window size based
on the fraction of marked bytes. AsWAN networks generally do not
support end-to-end ECN marking, we only enable ECN marking on
intra-datacenter switches5. DCQCN [50] is another rate-based pro-
tocol that also relies on ECN marks. Note that DCTCP and DCQCN
are used for datacenter traffic as well as WAN traffic (i.e., WAN traf-
fic gets marked in the datacenter and its receivers mirror the ECN
marking). This allows for comparing Annulus to systems where
WAN traffic also receives feedback from near-source congestion
points.

We use ns-2 FullTCP Sack implementation as our standard TCP
protocol and build other schemes on top of it. For DCTCP, we set
the parameters as described in [6]: (1) д, the factor for exponential
weighted averaging, is set to 1

16 , and (2) K , the buffer occupancy
threshold for setting the CE-bit, is set to 90KB (typical for 10 Gbps
links). For a fair comparison, for QCN-based schemes, we set Qof f
equal 90KB. All other TCP functionalities are the same as in FullTCP
Sack implementation. An important factor in flow completion times
is the Retransmission Timeout (RTO) of TCP as dropped packets are
5We did evaluate with ECN enabled on all of the switches, end-to-end, and have found
marking on the inter-datacenter fabric to have almost no impact on our results, as
most of the congestion happens locally in the intra-datacenter fabric.

 0

 0.4

 0.8

 1.2

 1.6

40 60 80

N
o

rm
a

liz
e

d
 F

C
T

Load (%)
(a) DM < 10KB

 0

 0.4

 0.8

 1.2

 1.6

40 60 80

N
o

rm
a

liz
e

d
 F

C
T

Load (%)
(b) FB < 10KB

 0
 0.5

 1
 1.5

 2
 2.5

 3

40 60 80

N
o

rm
a

liz
e

d
 F

C
T

Load (%)
(c) DM (10K , 100KB)

 0
 0.5

 1
 1.5

 2
 2.5

 3

40 60 80

N
o

rm
a

liz
e

d
 F

C
T

Load (%)
(d) FB (10K , 100KB)

 0
 1
 2
 3
 4
 5
 6

40 60 80

N
o

rm
a

liz
e

d
 F

C
T

Load (%)

Annulus
DCQCN
DCTCP

(e) DM > 100KB

 0
 1
 2
 3
 4
 5
 6

40 60 80

N
o

rm
a

liz
e

d
 F

C
T

Load (%)
(f) FB > 100KB

Figure 14: Average flow completion times for Data Mining
(DM) and Facebook (FB) workloads. Numbers are normal-
ized to FCT achieved by TCP CUBIC at 40% load. Note that
the range of the y-axis is different.

retransmitted after expiration of an RTO. We use commonly used
RTO values for inter and intra datacenter traffic [46, 48]. For intra-
datacenter traffic, we set the RTO value as 1ms . For inter-datacenter
traffic, we use an RTO value of 100ms .
Workload: We simulate empirical workloads based on observed
distributions in production data centers. In particular, we consider
two flow size distributions from a cluster running Data Mining
workload [21] and a Facebook’s Hadoop cluster workload [42]. We
generate mix of inter- and intra-datacenter traffic with roughly
1:5 ratio similar to Facebook’s production network [42]. In order
to simulate the high utilization of the inter-datacenter fabric, we
generate competing traffic originating from the external hosts. We
keep the link utilization of the external links at about 80% [26]. For
all our simulations, we select the source-destination pairs uniformly
across all of the host.
5.2.1 WAN/Datacenter Mix. Figure 14 shows the average comple-
tion times for intra-datacenter traffic achieved by each scheme as
the fabric load varies from 40% to 80% for the two workloads. The re-
sults are obtained for simulations with more than 500,000 flows and
normalized to the FCT achieved with TCP CUBIC at 40% load. We
break down the results for small [0, 10KB], medium [10KB, 100KB],
and large (> 100 KB) flows.

For the Data Mining workload, Annulus achieves about 4 − 5×
lower average FCT compared to TCP CUBIC for small and medium
flows. Note that TCP CUBIC does not appear in Figure 14 as its
performance is outside the plotted range. As expected, DCTCP and
DCQCN have comparable performance as they both use ECN as
the congestion feedback. However, Annulus outperforms DCQCN,
achieving 30% lower average FCT across all flow sizes at high load.
For the Facebook workload, the average flow completion times for

10

Annulus: A Dual Congestion Control Loop SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

 0.5

 1

 1.5

 2

 2.5

 3

 40 50 60 70 80N
o

rm
a

liz
e

d
 F

C
T

Load (%)
(a) Data Mining workload

 0.5

 1

 1.5

 2

 2.5

 3

 40 50 60 70 80N
o

rm
a

liz
e

d
 F

C
T

Load (%)

Annulus
DCQCN
DCTCP

(b) Facebook workload

Figure 15: 99.9th percentile FCT for small intra-datacenter
flows.

 0.6

 0.8

 1

 1.2

 1.4

 40 50 60 70 80N
o
rm

a
liz

e
d
 F

C
T

Load (%)
(a) Data Mining workload

 0.6

 0.8

 1

 1.2

 1.4

 40 50 60 70 80N
o
rm

a
liz

e
d
 F

C
T

Load (%)

Annulus
DCQCN
DCTCP

(b) Facebook workload

Figure 16: Overall average FCT for inter-datacenter flows.

Annulus are 4−5× smaller than TCP CUBIC for small flows. Similar
to the other workload, Annulus achieves 16 − 31% lower average
FCT compared to DCTCP and 12 − 24% lower than DCQCN.

The benefits of Annulus are more apparent in the tail latencies
of small flows. Figure 15 shows the 99.9 percentile of FCTs for small
flows for the two workloads. For the Data Mining workload, Annu-
lus leads to 5×, 3.5×, and 2× lower tail latency at 80% fabric load
compared to TCP CUBIC, DCTCP, and DCQCN, respectively. For
Facebook workload, Annulus outperforms DCQCN and achieves
30% lower tail latency at high load. This is consistent with our
testbed results.

We also found that Annulus improves the performance of the
inter-datacenter flows as well in the case of datacenter and WAN
traffic mixture. Figures 16a and 16b show the overall average FCT
for all the inter-datacenter traffic for data-mining and Facebook
workload, respectively. As it can be seen, Annulus improves the
overall average FCT by ∼ 10% compared to other schemes. Note
that inter-datacenter FCTs do not vary much as we always maintain
the link utilization of the external links at 80% regardless of the
intra-datacenter fabric load by generating competing flows. This is
inconsistent with our testbed evaluation, where WAN traffic does
not show improvements except at high WAN loads, is due to the
difference in implementation of the networking stack. In particular,
in our testbed evaluation, all traffic is paced. In the simulations, we
show that Annulus retains its advantages even when pacing is not
enabled, emphasizing the effect of the direct signal compared to
burst avoidance.
5.2.2 Edge Caching (purely WAN traffic). We evaluated the value of
Annulus for edge caching on the testbed. In simulation, we evaluate
the effect of WAN RTT on the performance of Annulus. Intuitively,
the longer the RTT, the higher the value of Annulus as end-to-end
techniques react slower. To model such a scenario, we simulate a
20:1 incast for WAN flows with varying RTT between 20ms to 80ms.

 0.4

 0.6

 0.8

 1

 20 40 60 80N
o

rm
a

liz
e

d
 F

C
T

RTT (ms)

Annulus
DCQCN
DCTCP

(a) Average

 0.4

 0.6

 0.8

 1

 20 40 60 80N
o

rm
a

liz
e

d
 F

C
T

RTT (ms)
(b) 99th percentile

Figure 17: Normalized FCT of large transfers for various
RTTs.

 0
 0.5

 1
 1.5

 2
 2.5

5 10 20 40 80

L
o
s
s
 R

a
te

 (
%

)

RTT (ms)

Annulus DCQCN DCTCP

Figure 18: Packet loss rate at the congestion point.

We set the delay from the senders to the congestion point to 50µs .
Each sender, transmits large transfers of 50MB to a single host. Once
each transfer is complete, senders immediately initiate the next
transfer. We run the simulation for 10,000 transfers and compute
the average and 99th percentile FCT. Figure 17 shows the results for
Annulus, DCTCP, and DCQCN. The numbers are normalized by the
FCT achieved by TCP CUBIC. Annulus leads to almost 10% smaller
average FCT and 20% smaller tail FCT when compared to DCTCP
and DCQCN. This is mostly due to roundtrip-timescale reaction of
DCTCP and DCQCN to the congestion, which is at order of tens of
milliseconds. Annulus exploits the direct congestion feedback of
QCN and reacts much faster that other scheme. This also lowers
the drop rate (< 1%) at the congestion points (Figure 18).

6 DISCUSSION
Improving the performance of CDNs: We show that Annulus
can be beneficial for cases where the traffic is mostly WAN. This
shows that Annulus can be of significant use for edge caching appli-
cations, where congestion might not be only at the ToR, but also at
the border switches connecting a cluster to the WAN. The delay of
a direct feedback signal from border switches provides much faster
feedback compared to end-to-end signals, allowing the benefits of
Annulus to remain in effect. However, such deployment carries the
challenges of fully routing L2 packets in IP-routed networks. We
hope that the results we present here rekindle this discussion and
encourage innovation that will allow for fast reaction to near-source
congestion.

Leveraging flexible and open data planes: More switches
are supporting programmable and open data planes including in-
network telemetry (INT) [4, 5]. This has enabled the development of
congestion control algorithms that leverages the INT information
to accurately react to congestion (e.g., HPCC [31]). INT information
is tagged on packets and mirrored by receivers by piggybacking the
information on acknowledgments, increasing the delay of receiving
such feedback. Our work with Annulus presents a motivation for
developing schemes that can report INT signals directly to sender

11

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA A. Saeed et al.

from switches. This will enable the development of better near-
source control loops.

Limitations:Our validation of Annulus is based on experiments.
Constructing models for dual loop congestion control protocols
remains an open and challenging problem. In particular, we be-
lieve our work should motivate further analysis of compatibility
of different control loops. Such work should analyze the stability
of a switched systems, like Annulus, where the overall behavior
is defined by two control loops which are triggered based on the
state of the system. Furthermore, our solution focuses on near-
source congestion for bottlenecks shared by WAN and datacenter
traffic. Theoretically, WAN and datacenter flows can also share bot-
tlenecks near the receiver. However, addressing such bottlenecks
requires a different approach (e.g., flow termination at the edge of
the datacenter).

7 RELATEDWORK
Congestion Control using delayed signals: The most common
approach to congestion control relies on signals that are inferred
from information piggybacked on acknowledgment packets. The
most basic signals are loss [19, 22, 25] and delay [11, 15, 16] which
are inferred by the sender based on the sequence numbers of the ac-
knowledgment. Explicit signals, generated by switches, help senders
infer congestion more accurately. Such signals include Explicit
Congestion Notification (ECN) [6, 8, 17, 50] and In-band Network
Telemetry (INT) [31] which are piggybacked on packets are mir-
rored by the receiver in acknowledgments. Some algorithms rely
on switches to infer the sending rate of senders (e.g., RCP [18] and
XCP [28]). However, all such algorithms suffer from issues caused
by delayed feedback discussed earlier. Annulus leverages the ad-
vantages of using such algorithms by keeping existing end-to-end
congestion control algorithms intact, while improving avoiding
their main drawback of long delays by augmenting their decisions
using the direct feedback signal.
CongestionControl using direct signals: Switches can use ICMP
Source Quench to notify sources of congestion [40]. However, the
deployment of ICMP Source Quench never took off and has been
recently deprecated due to challenges associated with practical de-
ployments. Further, ICMP source quench messages do not specify
the state of the switch (e.g., queue length), providing a single-bit
congestion signal. FastLane [48] provides direct feedback from
switches to traffic sources in cases of packet drops. This allows
Fastlane to improve the performance of short flows significantly.
However, generating messages only in cases of drops can allow
long queues build up. Further, FastLane is not supported by any
hardware the authors are aware of. Both ICMP source quench and
Fastlane operate above L2, allowing them avoid issues faced by
QCN (e.g., routing messages in an L3 network and requiring NIC
support). Annulus addresses QCN issues at the end host. We hope
that our results will motivate better direct signals that are imple-
mented above L2. Such signals and the algorithms using them can
be implemented within the framework defined by Annulus.
Centralized scheduling: WAN and datacenter performance is-
sues discussed earlier can be resolved if buffer occupancy within
the datacenter is orchestrated by a central entity. Fastpass [39] and

FlowTune [38] are examples of such systems. However, their mes-
saging complexity proved prohibitive for practical consideration.
Congestion control for datacenter-edge links has not been widely
addressed. Most of the existing schemes rely on minimizing conges-
tion at inter-datacenter or WAN links through traffic engineering
(e.g., SWAN [23] and B4 [26]). Annulus allows for fast reaction to
near-source congestion which improves WAN performance even
in cases when WAN traffic is the majority of network traffic.

8 CONCLUSION
WAN and datacenter traffic have significantly different require-
ments and path characteristics. We show that when the two types
of traffic compete for bandwidth and buffer space, both suffer per-
formance degradation. WAN feedback delay is too large and buffer
space at datacenter switches is too small. Datacenter traffic reacts
fast, taking most of the burden of draining queues. Furthermore,
feedback for the WAN traffic lags behind changes in capacity, mak-
ing it difficult for the WAN congestion control to track available
bandwidth accurately, leading to queue build up. We propose using
direct congestion signaling to reduce feedback time of WAN traffic.
We introduce Annulus, a dual congestion control loop that relies on
QCN to implement the near-source congestion control loop. This
approach significantly improves datacenter latency, utilization of
bottlenecks, and fairness between WAN and datacenter traffic. We
envision that this work will motivate further investigation of multi-
control loop congestion control as well as better models of scenarios
where WAN and datacenter traffic compete for bandwidth.

9 ACKNOWLEDGMENTS
We thank Yuchung Cheng, Neal Cardwell, Soheil Hassas Yeganeh,
Aamer Mahmood, and David Wetherall for providing useful feed-
back. We thank our shepherd, Costin Raiciu, and anonymous SIG-
COMM reviewers for their detailed and excellent feedback. This
work was funded in part by an award from the Cisco Research
Center and the National Science Foundation grants CNS 1816331,
CNS 1910676, CNS 1751009, and CNS 1563826.

REFERENCES
[1] 2010. IEEE Standard for Local and metropolitan area networks– Virtual Bridged

Local Area Networks Amendment 13: Congestion Notification. IEEE Std 802.1Qau-
2010 (Amendment to IEEE Std 802.1Q-2005) (April 2010), c1–119. https://doi.org/
10.1109/IEEESTD.2010.5454063

[2] 2011. NS-2 network simulator. http://nsnam.sourceforge.net/wiki/index.php/
MainPage.

[3] 2019. BCM56980 12.8 Tb/s Multilayer Switch Data Sheet. https:
//www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/
bcm56980-series.

[4] 2019. In-Band Network Telemetry - A Powerful Analytics Framework for your
Data Center. https://www.opencompute.org/files/INT-In-Band-Network-
Telemetry-A-Powerful-Analytics-Framework-for-your-Data-Center-OCP-
Final3.pdf.

[5] 2019. New Trident 3 switch delivers smarter programmability for enterprise and
service provider datacenters. https://www.broadcom.com/blog/new-trident-
3-switch-delivers-smarter-programmability-for-enterprise-and-service-
provider-datacenters.

[6] MohammadAlizadeh, Albert Greenberg, David AMaltz, Jitendra Padhye, Parveen
Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2011. Data
center tcp (dctcp). In Proc. of ACM SIGCOMM’11.

[7] Mohammad Alizadeh, Adel Javanmard, and Balaji Prabhakar. 2011. Analysis of
DCTCP: Stability, Convergence, and Fairness. In Proc. of ACM SIGMETRICS’11.

[8] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vahdat,
and Masato Yasuda. 2012. Less is more: trading a little bandwidth for ultra-low
latency in the data center. In Proc. of USENIX NSDI’12.

12

https://doi.org/10.1109/IEEESTD.2010.5454063
https://doi.org/10.1109/IEEESTD.2010.5454063
http://nsnam.sourceforge.net/wiki/index.php/Main_Page
http://nsnam.sourceforge.net/wiki/index.php/Main_Page
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56980-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56980-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56980-series
https://www.opencompute.org/files/INT-In-Band-Network-Telemetry-A-Powerful-Analytics-Framework-for-your-Data-Center-OCP-Final3.pdf
https://www.opencompute.org/files/INT-In-Band-Network-Telemetry-A-Powerful-Analytics-Framework-for-your-Data-Center-OCP-Final3.pdf
https://www.opencompute.org/files/INT-In-Band-Network-Telemetry-A-Powerful-Analytics-Framework-for-your-Data-Center-OCP-Final3.pdf
https://www.broadcom.com/blog/new-trident-3-switch-delivers-smarter-programmability-for-enterprise-and-service-provider-datacenters
https://www.broadcom.com/blog/new-trident-3-switch-delivers-smarter-programmability-for-enterprise-and-service-provider-datacenters
https://www.broadcom.com/blog/new-trident-3-switch-delivers-smarter-programmability-for-enterprise-and-service-provider-datacenters

Annulus: A Dual Congestion Control Loop SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

[9] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. 2004. Sizing Router
Buffers. SIGCOMM Comput. Commun. Rev. (2004).

[10] Alex Arcilla and Tony Palmer. 2019. Broadcom Trident 3 Platform Performance
Analysis: Achieving Predictably High Performance for Real-world Data Center
Workloads. ESG Technical Validation (2019).

[11] Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical Delay-Based Conges-
tion Control for the Internet. In Proc. of USENIX NSDI’18.

[12] Wei Bai, Kai Chen, Shuihai Hu, Kun Tan, and Yongqiang Xiong. 2017. Congestion
Control for High-Speed Extremely Shallow-Buffered Datacenter Networks. In
Proc. of the First Asia-Pacific Workshop on Networking (APNet’17).

[13] John Border, Markku Kojo, Jim Griner, Gabriel Montenegro, and Zach Shelby.
2001. Performance enhancing proxies intended to mitigate link-related degradations.
RFC 3135. Network Working Group.

[14] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-Independent Packet Processors.
SIGCOMM Comput. Commun. Rev. (2014).

[15] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. 1994. TCP
Vegas: New Techniques for Congestion Detection and Avoidance. In Proc. of ACM
SIGCOMM’94.

[16] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. 2016. BBR: Congestion-based congestion control. Queue (2016).

[17] Neal Cardwell, Yuchung Cheng, Soheil Hassas Yeganeh, Priyaranjan Jha,
Yousuk Seung, Ian Swett, Victor Vasiliev, Bin Wu, Matt Mathis, and Van Ja-
cobson. 2019. BBR v2: A Model-based Congestion Control - IETF 105 Up-
date. https://datatracker.ietf .org/meeting/105/materials/slides-105-iccrg-bbr-
v2-a-model-based-congestion-control-00.

[18] Nandita Dukkipati. 2007. Rate Control Protocol (RCP): Congestion control to make
flows complete quickly. Ph.D. Dissertation. Stanford University.

[19] Sally Floyd, Tom Henderson, and Andrei Gurtov. 2004. The NewReno Modification
to TCP’s Fast Recovery Algorithm. RFC 3782. Network Working Group.

[20] Prateesh Goyal, Anup Agarwal, Ravi Netravali, Mohammad Alizadeh, and Hari
Balakrishnan. 2020. ABC: A Simple Explicit Congestion Controller for Wireless
Networks. In Proc. of USENIX NSDI ’20.

[21] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta
Sengupta. 2009. VL2: A Scalable and Flexible Data Center Network. In Proc. of
ACM SIGCOMM’09.

[22] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: A New TCP-friendly
High-speed TCP Variant. SIGOPS Oper. Syst. Rev. 42, 5 (July 2008).

[23] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan
Nanduri, and Roger Wattenhofer. 2013. Achieving high utilization with software-
driven WAN. In Proc. of ACM SIGCOMM’13.

[24] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-Fares, Min Zhu, Richard Alimi,
Kondapa Naidu B., Chandan Bhagat, Sourabh Jain, Jay Kaimal, Shiyu Liang, and
et al. 2018. B4 and after: Managing Hierarchy, Partitioning, and Asymmetry
for Availability and Scale in Google’s Software-Defined WAN. In Proc. of ACM
SIGCOMM’18.

[25] V. Jacobson. 1988. Congestion Avoidance and Control. SIGCOMM Comput.
Commun. Rev. (1988).

[26] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. 2013. B4:
Experience with a globally-deployed software defined WAN. In Proc. of ACM
SIGCOMM’13.

[27] Mikel Jimenez and Henry Kwok. 2017. Building Express Backbone.
https://engineering.fb.com/data-center-engineering/building-express-
backbone-facebook-s-new-long-haul-network/.

[28] Dina Katabi, Mark Handley, and Charlie Rohrs. 2002. Congestion Control for
High Bandwidth-Delay Product Networks. In Proc. of ACM SIGCOMM’02.

[29] Praveen Kumar, Nandita Dukkipati, Nathan Lewis, Yi Cui, YaogongWang, Chong-
gang Li, Valas Valancius, Jake Adriaens, Steve Gribble, Nate Foster, and Amin
Vahdat. 2019. PicNIC: Predictable Virtualized NIC. In Proc. of ACM SIGCOMM’19.

[30] Charles E Leiserson. 1985. Fat-trees: universal networks for hardware-efficient
supercomputing. IEEE Trans. Comput. (1985).

[31] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan Yu. 2019.
HPCC: High Precision Congestion Control. In Proc. of ACM SIGCOMM ’19.

[32] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean Bauer,
Carlo Contavalli, Michael Dalton, Nandita Dukkipati, William C. Evans, Steve
Gribble, Nicholas Kidd, Roman Kononov, Gautam Kumar, Carl Mauer, Emily
Musick, Lena Olson, Erik Rubow, Michael Ryan, Kevin Springborn, Paul Turner,
Valas Valancius, XiWang, and Amin Vahdat. 2019. Snap: AMicrokernel Approach
to Host Networking. In Proc. of ACM SOSP’19.

[33] Partho P. Mishra and Hemant Kanakia. 1992. A Hop by Hop Rate-Based Conges-
tion Control Scheme. In Proc. of ACM SIGCOMM’92.

[34] Radhika Mittal, Nandita Dukkipati, Emily Blem, Hassan Wassel, Monia Ghobadi,
Amin Vahdat, Yaogong Wang, David Wetherall, David Zats, et al. 2015. TIMELY:
RTT-based congestion control for the datacenter. In Proc. of ACM SIGCOMM’15.

[35] Timothy Prickett Morgan. 2018. A Deep Dive Into Cisco’s Use Of Merchant
Switch Chips. https://www.nextplatform.com/2018/06/20/a-deep-dive-into-
ciscos-use-of-merchant-switch-chips/.

[36] Eugene Opsasnick. 2011. Buffer management and flow control mechanism in-
cluding packet-based dynamic thresholding. US Patent 7,953,002.

[37] Rong Pan. [n.d.]. QCN Pseudo Code: Version 2.2. http://www.ieee802.org/1/
files/public/docs2008/au-pan-QCN-pseudo-code-ver2-2.pdf.

[38] Jonathan Perry, Hari Balakrishnan, and Devavrat Shah. 2017. Flowtune: Flowlet
Control for Datacenter Networks. In Proc. of USENIX NSDI’17.

[39] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans
Fugal. 2014. Fastpass: A centralized zero-queue datacenter network. In Proc. of
ACM SIGCOMM’14.

[40] Jon Postel. 1981. Internet Control Message Protocol. RFC 792. Network Working
Group.

[41] George F Riley and Thomas R Henderson. 2010. The ns-3 network simulator. In
Modeling and tools for network simulation.

[42] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren.
2015. Inside the Social Network’s (Datacenter) Network. In Proc. of ACM SIG-
COMM ’15.

[43] Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius, Vinh The Lam, Carlo
Contavalli, and Amin Vahdat. 2017. Carousel: Scalable Traffic Shaping at End
Hosts. In Proc. of ACM SIGCOMM’17.

[44] Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan Katz-Bassett, Harsha V.
Madhyastha, Italo Cunha, James Quinn, Saif Hasan, Petr Lapukhov, and Hongyi
Zeng. 2017. Engineering Egress with Edge Fabric: Steering Oceans of Content to
the World. In Proc. of ACM SIGCOMM’17.

[45] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand
Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Holzle,
Stephen Stuart, and Amin Vahdat. 2015. Jupiter Rising: A decade of Clos topolo-
gies and centralized control in Google’s datacenter network. In Proc. of ACM
SIGCOMM’15.

[46] Vijay Vasudevan, Amar Phanishayee, Hiral Shah, Elie Krevat, David G Andersen,
Gregory R Ganger, Garth A Gibson, and Brian Mueller. 2009. Safe and effective
fine-grained TCP retransmissions for datacenter communication. In Proc. of ACM
SIGCOMM’09.

[47] Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve Padgett, Matthew Holli-
man, Gary Baldus, Marcus Hines, Taeeun Kim, Ashok Narayanan, Ankur Jain,
Victor Lin, Colin Rice, Brian Rogan, Arjun Singh, Bert Tanaka, Manish Verma,
Puneet Sood, Mukarram Tariq, Matt Tierney, Dzevad Trumic, Vytautas Valancius,
Calvin Ying, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat. 2017. Taking
the Edge off with Espresso: Scale, Reliability and Programmability for Global
Internet Peering. In Proc. of ACM SIGCOMM’17.

[48] David Zats, Anand Padmanabha Iyer, Ganesh Ananthanarayanan, Rachit Agar-
wal, Randy Katz, Ion Stoica, and Amin Vahdat. 2015. FastLane: making short
flows shorter with agile drop notification. In Proc. of ACM SoCC’15.

[49] Yimeng Zhao, Ahmed Saeed, Ellen Zegura, and Mostafa Ammar. 2019. zD: A
Scalable Zero-Drop Network Stack at End Hosts. In Proc. of ACM CoNEXT’19.

[50] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion control for large-scale RDMA deployments. In
Proc. of ACM SIGCOMM’15.

Appendix
Appendices are supportingmaterial that has not been peer-reviewed.

A THE CASE AGAINST BUFFER CARVING
AND SCHEDULING AT THE BOTTLENECK

First, this approach only improves the performance of the type of
traffic allocated more buffer space and prioritized by the scheduling
algorithm at the switch, at the expense of the other type. As shown
earlier, WAN traffic still suffer significantly leading to overall low
network utilization. Second, we find it to be less effective with
protocols like HPCC, which take total buffer occupancy as well
as total bottleneck rate as a signal rather than portions used by
individual types of traffic. Third, buffer carving is wasteful. Switches
have a limited number of queues which are typically allocated
and scheduled according to business-defined priorities (e.g., user
facing traffic is strictly more important than background copy jobs).
The number of jobs and their priorities far exceeds the number of

13

https://datatracker.ietf.org/meeting/105/materials/slides-105-iccrg-bbr-v2-a-model-based-congestion-control-00
https://datatracker.ietf.org/meeting/105/materials/slides-105-iccrg-bbr-v2-a-model-based-congestion-control-00
https://engineering.fb.com/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://engineering.fb.com/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://www.nextplatform.com/2018/06/20/a-deep-dive-into-ciscos-use-of-merchant-switch-chips/
https://www.nextplatform.com/2018/06/20/a-deep-dive-into-ciscos-use-of-merchant-switch-chips/
http://www.ieee802.org/1/files/public/docs2008/au-pan-QCN-pseudo-code-ver2-2.pdf
http://www.ieee802.org/1/files/public/docs2008/au-pan-QCN-pseudo-code-ver2-2.pdf

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA A. Saeed et al.

 0
 0.2
 0.4
 0.6
 0.8

 1

Day 1 Day 2

N
o

rm
a

liz
e

d
T

h
ro

u
g

h
p

u
t

Time
(a) Normalized aggregate throughput of all traffic initiated at studied
cluster

 0.2
 0.4
 0.6
 0.8

 1

Day 1 Day 2

N
o

rm
a

liz
e

d
T

h
ro

u
g

h
p

u
t

Time
(b) Normalized aggregate throughput of WAN traffic initiated from
studied cluster

 0
 0.2
 0.4
 0.6
 0.8

 1

Day 1 Day 2

N
o

rm
a

liz
e

d
L

a
te

n
c
y

Time

Median 95%-tile 99%-tile

(c) Aggregate latency for intra-cluster traffic

 0.2
 0.4
 0.6
 0.8

 1

Day 1 Day 2

N
o

rm
a

liz
e

d
D

ro
p

 r
a

te

Time
(d) Aggregate drop rate at ToR uplinks

Figure 19: Analysis of the impact of WAN traffic on datacen-
ter traffic from Cluster 2 over two days. All figures capture
the same period.

 0
 0.2
 0.4
 0.6
 0.8

 1

Day 10 Day 20 Day 30

N
o

rm
a

liz
e

d
T

h
ro

u
g

h
p

u
t

Time

(a) Normalized aggregate throughput of WAN traffic initiated from
studied cluster

 0
 0.2
 0.4
 0.6
 0.8

 1

Day 10 Day 20 Day 30

N
o

rm
a

liz
e

d
L

a
te

n
c
y

Time

Median 95%-tile 99%-tile

(b) Aggregate latency for intra-cluster traffic

Figure 20: Analysis of the impact of WAN traffic on Local
traffic from cluster 1 over 30 days.

 0.9
 0.92
 0.94
 0.96
 0.98

 1

 8x10
6

 1.6x10
7

 2.4x10
7

 3.2x10
7

 4x10
7

C
D

F

FCT (ns)

Baseline
Sched.

FIFO
Direct Signal

Figure 21: CDF of FCT for datacenter flows > 10KB using
HPCC for WAN and datacenter traffic.

available queues. Further dividing this limited resource based on
whether the traffic within a single job or user is datacenter traffic or
WAN traffic halves the number of available priority levels, which is
already scarce. Another type of waste caused by carving is that it
dedicates buffer resources to a certain type of traffic even when it
is not needed. Finally, buffer carving and scheduling do not handle
cases where congestion is caused purely by WAN traffic. In such
cases, the delayed reaction of WAN traffic lowers flow completion
time due to packet drops which take at least an RTT to recover
from. Furthermore, it lowers utilization due to long ramp up time.

B MORE ONWAN AND DATACENTER
TRAFFIC IN THEWILD

The behavior of Cluster 1, presented earlier, is also evident in the
second cluster. Figure 19 shows the same data from second studied
cluster. We note that, all clusters exhibit this behavior with various
degrees depending on job placement, demand, and topology. These
two clusters exhibit this behavior at cluster scale. This behavior
leads to our first two observations.

We record the behavior of Cluster 2 over a period of a month.
Figure 20a showsWAN traffic over the period of interest. Figure 20b
shows surges of tail latency of local traffic tracking surges in WAN
traffic. This behavior was also observed in the second cluster. Note
that the tail latency of datacenter traffic, naturally, correlates with
the aggregate throughput of all traffic in the cluster (both WAN and
datacenter), with a correlation coefficient of 0.82 in case of cluster
2. It also exhibits consistent high correlation with the throughput
of WAN traffic (e.g., a correlation coefficient 0.59 for the two-day
period in Figure 19). In Section 2.3, we explain in details the reason
behind this correlation.

C THE INTERACTION OF WAN AND
DATACENTER TRAFFIC WITH HPCC

We find that HPCC behaves the same way whether traffic is isolated
or not. This is because HPCC relies on overall buffer occupancy
and overall bottleneck rate, ignoring how the buffer space and rate
are divided between different traffic classes. HPCC achieves similar
WAN throughput to ideal. Figure 21 shows tail FCT of flows with
sizes larger than 10KB. Behavior of small flows was similar to that
of long flows, we do not include the figure for brevity. It is possible
to change HPCC to handle buffer carving, requiring careful consid-
eration of the impact of partitioning the signal on the algorithm.
It will also require considering changes to be made to the ASIC
collecting the INT information. Resolving these considerations is
out of scope of this work.

14

Annulus: A Dual Congestion Control Loop SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA
...

... ...

...

src dst

Cross Traffic Group 1 Cross Traffic Group 2

Figure 22: Topology of simulated network.

 20
 40
 60
 80

 100

 0 10 20 30 40 50 60 70 80

T
ra

n
s
m

is
s
io

n
R

a
te

 (
G

b
p

s
)

Time

Control Loop 1
Control Loop 2

Figure 23: Rate deduced by each control loop when bottle-
neck 1 has 100 flows going through it while control loop 2
has 10 flows going through it.

D BEHAVIOR OF THE UNCONSTRAINED
BOTTLENECK

We answer the following question: when one control loop is setting
the minimum rate, what rate is the other control loop reaching? We

answer the question through simulations. We create the topology
in Figure 22. In this topology, one flow goes through two congested
switches, where each switch is controlled by a separate control loop.
The control loops rely on ECN marking to determine congestion
and react to it using DCTCP. The flow sends at the minimum of
the two. The two switches are congested by having Cross Traffic
Group 1 and 2 go through them. By changing the number of flows
is each group, we make the switch with more flows going through
it more congested. We observe the rate deduced by each control
loop. In this simulation, all links are 100Gbps with latency of 1
microseconds (i.e., RTT of main flow is 10 microseconds).

Figure 23 shows the rate set by each control loop, when bottle-
neck managed by control loop 1 has 100 flows going through while
control loop two has 10 flows in addition to the main flow. Control
loop 1 reaches a rate of around 6 Gbps, which the flow uses. The
second loop reaches a rate of 45 Gbps on average. Both control
loops reach a rate higher than their fair share which is an artifact
of the underlying congestion control algorithm. However, the main
take away here is that the second control loop still gets conges-
tion feedback and reduces it rate to a cap that is reasonably within
the transmission rate of cross traffic. We repeated the experiments
with varying degrees of congestion for the second control loop. We
found that the second control loop roughly tracks its fair share,
as long as there is cross traffic at the bottleneck handled by the
control loop. Cross traffic generates congestion signals, allowing
the control loop to set its rate accurately.

15

	Abstract
	1 Introduction
	2 Motivation
	2.1 Interaction of WAN and Datacenter Traffic in the Wild
	2.2 Causes of Performance Impairments
	2.3 A Closer Look at Interaction of WAN and Datacenter Traffic
	2.4 Value of Direct Signals

	3 Annulus Design
	3.1 Annulus Design Rationale
	3.2 Near-Source Congestion Control Loop
	3.3 Combining the Two Control Loops

	4 Implementation
	5 Evaluation
	5.1 Testbed Evaluation
	5.2 Simulations Evaluation

	6 Discussion
	7 Related Work
	8 Conclusion
	9 Acknowledgments
	References
	A The case against buffer carving and scheduling at the bottleneck
	B More on WAN and Datacenter Traffic in the Wild
	C The Interaction of WAN and Datacenter Traffic with HPCC
	D Behavior of the Unconstrained Bottleneck

