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ABSTRACT
Low-cost mini-drones with advanced sensing and maneuverabil-

ity enable a new class of intelligent visual sensing systems. �is

potential motivated several research e�orts to employ drones as

standalone surveillance systems or to assist legacy deployments.

However, several fundamental challenges remain unsolved includ-

ing: 1) Adequate coverage of sizable targets; 2) Target orientation

that render coverage e�ective only from certain directions; 3) Oc-

clusion by elements in the environment, including other targets.

In this paper, we present Argus, a system that provides visual cov-

erage of wide and oriented targets, using camera-mounted drones,

taking into account the challenges stated above. Argus relies on

a geometric model that captures both target shapes and coverage

constraints. With drones being the scarcest resource in Argus, we

study the problem of minimizing the number of drones required to

cover a set of such targets and derive a best-possible approximation

algorithm. Building upon that, we present a sampling heuristic

performs favorably yet is up to 100x faster compared to the approxi-

mation algorithm. We implement a complete prototype of Argus to

demonstrate and evaluate the proposed coverage algorithms within

a fully autonomous surveillance system. Finally, we evaluate the

proposed algorithms via simulations to compare their performance

at scale under various conditions.

CCS CONCEPTS
•�eory of computation→Computational geometry; •Computer
systems organization →Sensor networks;

KEYWORDS
target coverage; full-view coverage; drone-based surveillance; art

gallery problems; visibility; approximation algorithm

ACM Reference format:
Ahmed Saeed, Ahmed Abdelkader, Mouhyemen Khan, Azin Neishaboori,

Khaled A. Harras, and Amr Mohamed. 2016. Argus: Realistic Target Cover-

age by Drones. In Proceedings of �e 16th ACM/IEEE International Conference
on Information Processing in Sensor Networks, Pi�sburgh, PA USA, April 2017
(IPSN 2017), 12 pages.

DOI: h�p://dx.doi.org/10.1145/3055031.3055078

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

IPSN 2017, Pi�sburgh, PA USA
© 2017 ACM. 978-1-4503-4890-4/17/04. . .$$15.00

DOI: h�p://dx.doi.org/10.1145/3055031.3055078

1 INTRODUCTION
Public spaces such as airports, train stations, shopping malls and

schools, are usually monitored with the aid of security cameras

mounted at key locations. Such cameras greatly help overview

the area of interest and guide �rst responders in the event of an

emergency, which can have a signi�cant impact on crime [36].

Moreover, visual sensor systems enable the automation of complex

tasks like crowd counting, event detection, object tracking, target

identi�cation, and activity recognition [17]. �e automation of

these tasks has the potential of providing be�er solutions to several

operational and security issues in public spaces (e.g., queue length

estimation and perimeter protection).

�ere are several theoretical and practical challenges associated

with the design of e�ective and e�cient visual sensor systems

as exempli�ed by recent work on surveillance. Such intelligent

systems with advanced features like automatic identi�cation and

recognition impose a set of requirements on video footage:

• Subjects should be facing the camera [9] or within a certain

viewing angle [7].

• Relevant portions of subjects should be fully captured,

preferably by a single camera to avoid stitching images

from multiple viewpoints, which can be challenging [38].

• As a prerequisite, occlusions and blind spots should be

avoided by positioning cameras properly [54].

To the best of our knowledge, no earlier work in smart surveillance

tackled these challenges simultaneously.

An extreme approach to some of these challenges is to increase

the density of deployed cameras such that any object, within the

area of interest, is covered from all angles [52, 53]. �is requires a

large number of cameras incurring a rather high cost [57]. Further-

more, targets are typically modeled as mere points which results in

two issues. First, mutual occlusion between targets and occlusion

by obstacles in the area are not accounted for, which can create

blind spots. Second, assuming sizable targets can be represented

by multiple points, there is no guarantee that the target will be

fully captured in the frame of at least one camera if each point

is treated separately and may be covered by a di�erent camera.

Another approach is to optimize the orientations of cameras in a

static deployment to minimize occlusions, however, this does not

ensure the target will be facing the camera [48]. It is clear that mod-

eling targets by more than mere “blips” can improve the quality of

the collected data which enables more realistic sensing and more

e�ective systems.



IPSN 2017, April 2017, Pi�sburgh, PA USA A. Saeed et al.

In this paper, we introduce Argus, a system that tackles all iden-

ti�ed challenges by exploiting the rapid advancements in mini-

drone technologies and their anticipated applications in surveil-

lance, crowd monitoring [21], infrastructure inspection [8] and

cinematography [30]. In particular, camera-mounted drones are

dispatched and dynamically positioned to eliminate blind spots and

capture frontal views of the subjects of interest. Argus uses the

Oriented Line Segment Target Model (OLS), a new geometric model

we develop to capture target orientation, size, and potential occlud-

ers. Such information can be estimated with high accuracy from

visual sensors [14] or other contextual sensors (e.g., device-free RF-

based techniques [3]). Argus relies on static cameras which capture

coarse grain footage providing the information needed to estimate

OLS target traits. With drones being the most valuable resource in
Argus, we focus on the problem of drone placement to cover targets
under the OLS model while minimizing the number of drones needed.

Intuitively, OLS looks at a cross-section through the object and

�ts a line segment and orientation to estimate its size and facing

direction. While still being simple, the new model is more com-

plex than plain points and requires a more advanced system to

estimate it and new algorithms to utilize it. We show that minimiz-

ing the number of drones under OLS is NP-hard and even hard to

approximate [46]. In this paper, we develop a best-possibleO (logn)-
approximation algorithm, where n is the number of targets. �e

algorithm is based on a novel spatial subdivision of the search space

for camera placement by the various coverage constraints, which

elucidates the treatment of the new OLS model for computation.

We leverage these insights to develop a more e�cient coverage

heuristic that almost matches the performance of the approximation

algorithm while running up to 100x faster in our simulations with

large numbers of targets and various target and camera parameters.

We prototype a fully autonomous Argus with two AR.Drone 2.0

quadcopters ��ed with camera sensors and a �xed PTZ-camera as

the source of target information. We use the prototype to demon-

strate the drastic di�erence in coverage quality enabled by OLS
compared to the traditional model of targets as mere blips on the

radar. Our experiments with synthetic targets show that adopting

the enhanced OLS model does not introduce signi�cant overheads

with respect to the navigation and control algorithms already run-

ning in the system.

�e contributions of this paper are three fold:

• We present Argus, a fully autonomous system that con-

trols drones to provide high quality unobstructed coverage

of targets from appropriate viewpoints based on a novel

Oriented Line Segment Target Model (OLS).
• We design a best-possible O (logn)-approximation algo-

rithm and an e�cient heuristic for coverage. We compare

the proposed algorithms through extensive simulations.

• We implement and analyze a fully autonomous prototype

of Argus to demonstrate the superior quality of coverage

it can o�er, and gauge the overhead of the proposed algo-

rithms within a realistic system.

�e rest of the paper is organized as follows. In Section 2, we

describe Argus and the novel OLS model along with related ap-

plications that can bene�t from Argus. We proceed to study OLS
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Figure 1: Camera parameters.

and develop the coverage algorithms in Section 3. Section 4 dis-

cusses the implementation of the Argus prototype, which we use

together with simulations to evaluate Argus in Section 5. Finally,

we highlight related work in Section 6 and conclude the paper in

Section 7.

2 ARGUS OVERVIEW
Argus is a fully autonomous system that aims to capture high qual-

ity video footage of identi�ed targets of interest subject to coverage

constraints. In this section, we introduce a new target model that

captures both width and orientation, and formally de�ne the cov-

erage problem for this new model, taking occlusions into account.

�en, we introduce the system components and properly de�ne

the scope of this study. Finally, we present trending applications

we envision Argus can execute or help improve signi�cantly.

2.1 Coverage Model and Problem Formulation
Sensor Model: We think of sensors as autonomous quadcopters,

equipped with cameras. �e con�guration of a sensor is a tuple

Si = 〈Pi ,αi ,θ ,Rmin ,Rmax 〉, where: Pi is the location of the sensor

in 2D and αi is the Viewing Direction (VD) measured counter-

clockwise from the positive x-axis (Figure 1(a)), θ is the Angle of
View (AOV), Rmin and Rmax are the minimum and maximum al-

lowable distances between the camera and any target for acceptable

viewing quality. A similar model has been presented for several

anisotropic sensors [5].

Definition 1. Field of View (FOV) (Figure 1(b)): �e unoccluded
area that can be viewed by a sensor with an acceptable quality. For-
mally, it is the spherical frustum having the camera at P as its apex
with an axis at angle α , an opening angle of θ , and limited by Rmin
and Rmax with any occlusions subtracted.

Oriented Line Segment Target Model (OLS): We model tar-

gets in 2D as line segments whose lengths are the width of the

targets, and orientation is a vector perpendicular to the line seg-

ment. Larger targets can be represented by one or more line seg-

ments representing their di�erent aspects and their corresponding

orientations. Formally, the con�guration of a target is the tuple

Tj = 〈P
s
j , P

e
j ,
−→
D j 〉, where Psj and Pej are the start and end points of

the line segment and

−→
D j is the orientation vector. Furthermore, we
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de�ne Mj as the midpoint of the target and letWj denote its width.

We assumeWj � Rmax ∀ j.
Obstacle Model: We reuse the line segment primitive to repre-

sent obstacles by the segments along their boundaries. Obstacle

Ok is a chain of segments {〈Ps
1
, Pe

1
〉, 〈Ps

2
, Pe

2
〉, . . . }, which block vis-

ibility but, unlike targets, have no orientation.

Coverage Model: A sensor Si is said to fully cover a target Tj
if the following conditions apply: (Figure 1(b)): 1) Tj falls in the

FOV of Si which means that it is neither too far nor too close and

that a line segment from Si to any point on Tj does not intersect

any other target or obstacle. 2) �e angle between

−→
D j and

−−−→
MjSi is

≤ π/2, meaning that Si can capture frontal views of Tj .

Definition 2. Full Coverage: A targetTj is fully covered if Psj P
e
j

is fully contained in the FOV of some camera Si∗ , with Tj facing Si∗ .

ModelingAssumptions: �e main assumption we make in this

work is that target locations and orientations can be estimated by a

coarse grain surveillance system. �is assumption leverages recent

advances in target detection and tracking using �xed cameras (e.g.,

[14] for pedestrians). OLS is essentially proposed to obtain close-

up views of targets using mobile cameras and provide �ne grain

surveillance as needed. �is approach is supported by work on

multi-tier camera sensor networks where coarse grain knowledge

may be acquired via higher tier cameras providing low granularity

coverage su�cient for detection and localization, but insu�cient

for identi�cation, recognition, or activity monitoring [34].

�eCoverage Problem: We formally de�ne the coverage prob-

lem for OLS targets and brie�y discuss its hardness and the ap-

proaches we take to compute a solution.

Definition 3. Oriented Line Segment Coverage Problem (OLSC):
Let T be a set of n oriented line segments, that may only intersect
at their end points, and O be a set of u obstacles. Find the min-
imum number of mobile directional visual sensors, with uniform
〈θ ,Rmin ,Rmax 〉, required to fully cover all segments in T .

It is necessary to establish lower-bounds on the e�ciency of

algorithms for such problems to be�er understand how to tackle

them in practice. To this end, we show that OLSC is NP-Hard and

even hard to approximate by studying a variant of the Art Gallery

Problem with an AOV θ < 360
◦

[46].

Solving OLSC requires the generation of a set of candidate cam-

era placement con�gurations (i.e., location and orientation pairs)

and selecting a set of con�gurations that cover all targets while min-

imizing the number of cameras. �is approach relies on subdividing

the search space (i.e., the plane) by the various coverage require-

ments of the targets in T . �ese subdivisions produce a �nite set

of potential camera location and orientation pairs (R) which is con-

venient for computation. We consider R to be comprehensive if it

contains at least one representative for each region of space where

cameras could be placed to cover any given subset of targets. With

that, OLSC is reduced to picking a subset of R to cover all targets

in T , which is equivalent to solving the SET-COVER problem over

(T ,R ). Hence, applying the well-known greedy selection scheme

guarantees an O (logn)-approximation of the minimum number of

cameras needed to cover T [16], which, by our lower-bound results

[46], is the best-possible for OLSC.

Coarse Grain Context Detector 

Oriented Line Segment Coverage 
Problem Solver

Location, width, and 
orientation of targets

Cameras coverage 
configuration 

(location and orientation)

High altitude pictures 
of targets

Fine Grain 
Context DetectorTargets

Low altitude pictures

Low altitude pictures

1
2

3

4

Figure 2: Operational �ow of Argus.

2.2 �e Argus System
Argus relies on two tiers of surveillance systems. �e top tier, used

for coarse grain surveillance, provides the location, width, and

orientation of targets and obstacles. �e lower tier uses the output

of the top tier to provide �ne grain coverage using mobile drones;

a setup we believe will become more feasible as drones get smaller

(e.g., [40]). Having a hierarchy of surveillance systems allows each

tier to be responsible for di�erent tasks [34]; see the survey in

[42]. �is concept was also used in [13] where PTZ cameras are

used to identify the type of bags carried by subjects based on the

locations determined by static cameras. Alternatively, the location

and orientation information of targets can be provided by non-

visual means like radar and device-free localization systems (e.g.,

[3] which can detect both the orientation and location of humans

using Wi-Fi signals). Camera-mounted drones in the lower tier can

use the locations estimated by such RF-based systems to capture

video footage of the detected targets.

Figure 2 depicts the operational �ow of the Argus system. �e

system consists of four components: 1) Coarse Grain Context Detec-
tor, 2) OLSC Solver, 3) Drone Controller, and 4) Fine Grain Context
Detector. �e Coarse Grain Context Detector is responsible for ob-

taining basic target information, from high altitude cameras or

coarse grain RF sensors, that the OLSC Solver uses to determine

the positioning strategy of mobile cameras. �e inputs that the

OLSC Solver requires are the location, width, and orientation of

each target. �e output of the OLSC Solver is used by the Drone
Controller to move the low altitude cameras to capture high qual-

ity unobstructed images of whole targets. �ese images can then

be further processed, through the Fine Grain Context Detector, by

di�erent context extraction algorithms [27]. We realize that imple-
menting each of these components is challenging in its own right with
many open research problems. Hence, we focus on the OLSC Solver
and present vanilla approaches to the other components of Argus.

2.3 Further Applications for Argus
Although surveillance is the natural use case for Argus, the same

work�ow can immediately be used to plan a deployment of static

cameras to cover a set of static targets (e.g., artifacts in a museum).

To further demonstrate the utility of the proposed system, we dis-

cuss two particularly relevant applications that have received a

growing interest recently.
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In structural inspection, Argus is able to represent the compo-

nents to be inspected as wide objects that can occlude one another

as well as provide a limited number of viewpoints that need to be

visited [8]. In such scenarios, the number of targets can be very

large. We analyze the scalability of Argus in Section 5.2.

Cinematography, both in reality or in virtual worlds, frequently

considers the planning of camera trajectories to obtain the desired

shots in a given scene [30]. Argus can generate candidate view-

points given a description of anticipated target locations, which may

even be planned by a director in a cinematographic context. Argus

also accommodates additional requirements on camera placements

to help optimize the shots as we discuss in Section 3.2.

3 DRONE PLACEMENT: THE OLSC SOLVER
Deploying drones requires con�guring each with a location to move

to and a direction to point its camera sensor. �ere are in�nitely

many possible con�gurations spanning every location where a

drone can be positioned and every direction it can be covering. In

order to get a handle on the problem of drone placement, the key

step is to reduce the space of con�gurations into a small �nite subset.

�e goal of the OLSC Solver is to compute a set of con�gurations

that covers a given set of OLS targets using the minimum number

of drones. �e OLSC Solver can be broken down into three modules:

1) A Spatial Discretizer responsible for �nding a small subset of

points to work with, 2) An Angular Discretizer that determines the

relevant directions to consider at each of the points selected by the

Spatial Discretizer, and 3) A Con�guration Selector to pick a subset

of the con�gurations generated by the Angular Discretizer.

3.1 Spatial Discretizer
�e goal of the Spatial Discretizer is to generate the candidate

locations for camera placement. Each candidate location can be

used to view a subset of targets under the coverage model. A key

characteristic of the Spatial Discretizer is the nature of the set of

candidate locations it generates. We de�ne two types of candidate

sets: 1) comprehensive and 2) heuristic, denoted by P and
ˆP, re-

spectively. Comprehensive representation of the search space
means that the set of candidate locations is guaranteed to in-
clude all optimal con�gurations, up to an equivalence. Two
con�gurations are equivalent with respect to a subset of tar-
gets if both con�gurations can cover these targets under the
same constraints. Heuristic sets are not guaranteed to be compre-

hensive but are an e�ective alternative which is also practical as

they include fewer locations allowing faster computation of drone

con�gurations at the expense of a potential increase in the number

of drones.

Formally, given a comprehensive set of candidate locations P we

are able to obtain an O (logn)-approximation algorithm. However,

generating the O (N 4) candidates required for a comprehensive set

can be an overkill and incurs much higher overhead. �is, in turn,

slows down both the Angular Discretizer and Con�guration Selector
as they would have to go through too many candidates. To remedy

this, we develop a heuristic spatial discretizer that generates O (N )

candidates
ˆP, enabling the OLSC Solver to handle larger numbers

of targets.

Target

(a) Boundary of points no farther than

Rmax from any point on the target.

Targetα 
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γ 

Camera 
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entation constraints.
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Figure 3: Basic Camera Placement Field (BCPF).

3.1.1 Comprehensive Spatial Discretization. Our objective is to

identify candidate locations that comprehensively represent the

search space through spatial subdivisions based on target, obstacle,

and camera constraints. We have four constraints for a camera

to cover a target: range (i.e., being within Rmin and Rmax from

the target), angle of view (i.e., being within the camera’s FOV

of width θ ), target orientation (i.e., capturing the target from its

signi�cant perspective) and occlusion avoidance (i.e., having no

target or obstacle occluding the target of interest). First, we focus on

satisfying all these constraints for a single target, which allows us to

develop the essential tools needed to compute camera placements.

�en, we show the extension to a pair of targets using a convenient

approach to covering multiple target simultaneously. Finally, we

generalize to arbitrary subsets of targets by satisfying their coverage

constraints in a pairwise fashion.

Covering a single target by a single camera: We aim to de-

termine the region around a target where a camera can be placed

and oriented to fully cover this target. We call this region the Cam-
era Placement Field (CPF). It is more convenient to de�ne the CPF

by introducing one constraint at a time.

Starting with range constraints, Figure 3(a) shows how the space

around a target is restricted by Rmax to the intersection of two

circles each centered at one end point of the target segment, since

target width is� Rmax (Rmin = 0 was used to simplify the �gure).

Next, for the AOV constraint, we exclude locations too close to the

target such that the angle required for full coverage would be larger

than θ . �e area to exclude is bounded by anAOV arc with the target

segment as a chord at an inscribed angle of θ . �en, we exclude

everything behind the target to account for target orientation.
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Target 1

Target 2

Occlusion 
Area

Target 1

Target 2

Occlusion 
Area

Figure 4: Camera Placement Field (CPF) of Target 1 (in thick
line) a�er applying occlusion constraints by some occluder
(marked here as Target 2).

Applying the �rst three constraints only results in an area we

refer to as the Basic Camera Placement Field (BCPF). �e BCPF

is bounded by three arcs and two line segments as illustrated in

Figure 3(b), which assumes that a camera can cover targets at 90
◦

rotations. While some tasks like face detection can still yield high

accuracy at 90
◦

rotations [15], the accuracy of object matching

and point matching between two images drop signi�cantly for

rotations larger than 45
◦

[7]. To incorporate notions of quality in

the coverage model, the BCPF can be restricted to only include

locations within a certain rotation with respect to the target. �is

is achieved by a controllable parameter ϕ that constrains the range

of acceptable rotations as illustrated in Figure 3(c).

Applying the last constraint, if other targets or obstacles inter-

sect the BCPF of the target at hand, it is necessary to exclude the

occlusion area of all points within the BCPF where any camera

cannot provide full coverage of this target. �is is obtained by the

lines connecting opposite ends of the occluding segment and the

target segment as illustrated in Figure 4. �e vertices along the

boundary of the CPF will be referred to as the critical points of the

CPF as they play a crucial role in our algorithms.

Covering a pair of targets by a single camera: For a single

camera to cover two targets, it must fall in the CPF of each, meaning

that camera placement is limited to the Intersection Area (IA) of

their CPFs as shown in Figure 5(a). �is guarantees a placement

that satis�es range, orientation, and occlusion constraints for both

targets. As for the AOV constraint, we need a set of AOV circles to

exclude all locations that cannot fully cover both targets simultane-

ously. Instead of using targets themselves as chords to de�ne the

circles as in the case of a single target, we use the four line segments

connecting their end points. For each such line segment, the area to

exclude is determined by the two circles having that segment as a

chord with an inscribed angle of θ ; we call these the AOV circle pair.
For θ ≤ π

2
, we exclude the union of the AOV circle pair while for

θ > π
2

we exclude their intersection. Note that the camera never

lies inside both AOV circles as the intersection is always excluded.

Hence, we can use individual AOV circles to enforce one constraint

at a time. Using all four line segments results in 4 AOV circle pairs

which can be shown to contain all relevant AOV circles for these

two targets. Figure 5(b) shows two examples of AOV circle pairs.

Covering a set of targets using a single camera: For a single

camera to cover three or more targets, the camera must fall in the IA

Target 1

Target 2

(a) AOV circle pair (θ < π
2

).

Target 1Target 2

Parts of IA that 
satisfy AOV 
constraint

Part of IA that 
does not 

satisfy AOV 
constraint

(b) Intersection Area (yellow) and its restriction by only

one of the 4 AOV circle pairs for two targets (θ > π
2

).

Figure 5: AOV circle pairs and intersection area (IA).

of all of their CPFs and outside some of their AOV circles. It is clear

that any computation on the power set of T , examining all subsets

to generate all possible IAs, would take an exponential number of

steps. We avoid this paradigm of enumerating IAs explicitly, and

only compute discrete representatives for them.

Comprehensive representation of the search space: �e

representatives we compute are the intersection points of the geo-

metric coverage constraints. Note that the vertices along the bound-

ary of any potential region for camera placement to cover a given

subset of targets are either critical points of a CPF, intersection

points between CPFs, or intersection points between CPFs and

AOV circles; we use P to denote the set of all such vertices. We

prove that P is a comprehensive representation.

Theorem 3.1. Given an OLSC instance 〈T ,θ ,Rmin ,Rmax 〉, the
set P contains at least one representative for each feasible coverage
con�guration for all subsets of T .

Proof. Let S ⊆ T be a subset of k targets that can be covered

simultaneously by a single camera c placed at point x . �e case

where k = 1 is trivial, since any critical point on the CPF of a single

target can be used as a representative for covering that target. Since

P contains all critical points of all CPFs, we are done. For k ≥ 2,

let Ak be the region around x to which c can be moved and rotated

accordingly while still being able to cover all k targets in S . Clearly,

Ak must lie in the intersection of CPFs of all targets in S . Otherwise,
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by the de�nition of a CPF, at least one of the orientation, range

(Rmax and Rmin ) or occlusion constraints would be violated for at

least one target in S , a contradiction. Moreover, Ak must lie outside

at least one of the AOV circles generated by all pairs of targets in

S . Otherwise, by the de�nition of an AOV circle pair, c would not

be able to simultaneously cover at least two of the targets in S by

an AOV θ , again a contradiction. We may therefore think of Ak as

a region enclosed in a set of CPFs with some parts taken out by a

set of AOV circles. �is implies that Ak is bounded by at least one

CPF and possibly some AOV circles. �is allows us to describe Ak
by the curves outlining its boundary and their intersection points.

Regarding Ak as the equivalence class of points where a camera

can be placed to cover S , any of these intersection points can serve

as a representative. As there is at least one CPF boundary for Ak ,

these intersection points must contain either an intersection point

of two CPFs or an intersection point of a CPF and an AOV circle.

By construction, P contains all such intersection points. �

We consider the complexity of generating P. Le�ing N = n + u,

each CPF can be represented by up to O (N ) pieces as all other n
targets and u obstacles can split the BCPF into several parts. �us,

the operation of intersecting two CPFs is O (N 2) and performing

this operation pairwise for all targets is O (n2N 2). �e operation

of intersecting a CPF with an AOV circle is O (N ), and is repeated

O (n2) times for all AOV circles resulting in anO (n2N ) operation per

target. Hence, repeating this operation O (n) times takes O (n3N ).
�is amounts to a total of O (n2 (n2 + nu + u2)). We relax this

expression to O (N 4) and loosely bound |P | = O (N 4).

3.1.2 Heuristic Spatial Discretization. �e O (N 4) candidates

generated by the approximation algorithm are too demanding for

real-time applications. On top of that, we can still produce good

solutions using far fewer candidates at the cost of missing tightly

packed con�gurations corresponding to small intersection areas.

�e reason is that each additional target further restricts the region

of space where cameras can be placed to cover the set of targets si-

multaneously. In practice, such con�gurations are neither robust to

errors in target localization and drone navigation nor stable enough

to capture the anticipated views before targets move apart. �is

motivates a more e�cient and robust approach to the generation

of candidates. We propose the Basic Camera Placement Field (BCPF)
sampling.

An intuitive approach to yield O (n) candidate locations is to

sample a constant number of points per target taking occlusion

into account. However, an easy �rst order relaxation is that any

camera placement covering a given target must fall in its BCPF of

that target (Figure 3(b)). �e advantage of using the BCPF instead

of the actual CPF, is that BCPF can be computed in O (1) per target

compared toO (N ) for the CPF. Once the BCPF is known, uniformly

sampling its interior should capture most of the useful con�gura-

tions. Note that the intersection of multiple BCPFs gets sampled

proportionally which favorably reduces the probability of missing

good candidate points. However, as suggested by our simulations

with uniformly random target where adversarial arrangements are

unlikely, it su�ces to sample points along the boundary of the BCPF.

Le�ing ρ be the sum of the central angles of the two BCPF arcs and

the apex angle of the triangle in between, we can �x suitable BCPF

sampling steps ϵa and ϵr for the angular and radial axes, respec-

tively. With that, we generate O (
ρ ·Rmax
ϵa ·ϵr · n) candidate locations

that we call
ˆP. Our experiments show the promise of this almost

agnostic approach to candidate generation as it is able to match the

quality of the approximation algorithm while being much faster.

3.2 Angular Discretizer
Once a camera is placed at a given location x from either P or

ˆP, we

need to determine the relevant viewing directions (VDs) to consider.

We achieve this in two stages: First, we perform an angular sweep

to identify one representative VD for each subset of targets that

can covered simultaneously from the location in question. �en,

we optimize representative VDs for be�er footage quality.

Angular sweep: �is step identi�es a set of representative VDs

sweep (x ) = {α̂1, α̂2, . . . } for each maximal subset of targets that

can be covered simultaneously by a camera placed at x . Each such

maximal subset can be covered by a range of viewing directions

[α li ,α
h
i ]. �e application may specify a criteria for selecting the

best direction from this range. As a default se�ing, we use α̂i =

(α li + α
h
i )/2. Let cov (x ,α ) denote the maximal subset of targets

covered by a camera at x when its VD is set to α . Observe that if

we perform a radial sort around x of the end points of all target

segments visible from x , no two targets overlap. Given the radial

sort of all end points, we can easily determine which targets are

visible by discarding segments interrupted by a closer point and

enumerate sweep in O (N ). �e radial sort can easily be found

in O (N logN ). Alternatively, a visibility diagram for the set of

segments can be constructed in O (N 2) [51]. Using the diagram,

sweep queries take O (N ).
Viewing direction optimization: Ideally, surveillance footage

should provide clear frontal views by an assignment of cameras

to targets with each camera-target pair nearly facing one another.

�is easily breaks down when the camera’s viewing direction is

not directly towards the target. Given a candidate location for

camera placement x , each maximal subset of targets cov (x , α̂i ) may

be covered by any viewing direction α ∈ [α li ,α
h
i ]. Within this

range, one extreme might favor certain targets placing them right

at the center of the FOV, while other targets barely �t at the side.

Depending on the spread of these targets and the direction each

of them is facing, a camera positioned at x can adjust its VD to

obtain the best views possible. A natural objective is to minimize

the deviation, de�ned as the angle between the camera’s VD and the

line-of-sight from x to the target’s midpoint. Let d (x ,α ,Tj ) denote

the deviation for target Tj when viewed by a camera at x with

VD α . With that, we seek to minimize the total deviation over all

targets f1 (x , α̂ ,α ) =
∑
Tj ∈cov (x, α̂ ) d (x ,α ,Tj ). �e optimal VD α∗

can then be chosen as arg minα ∈[α l ,αh ]
f1 (x , α̂ ,α ). Alternatively,

we may choose to minimize the worst deviation for any one target

f∞ (x , α̂ ,α ) = maxTj ∈cov (x, α̂ ) d (x ,α ,Tj ).

3.3 Con�guration Selector
With the output of the Angular Discretizer as the set of con�gura-

tions R = {cov (x , α̂ ) | x ∈ P, α̂ ∈ sweep (x )}, our goal is to �nd a

minimum set cover which is a subset Ropt ⊆ R whose union is T

with |Ropt | minimized. Using the standard greedy approximation

scheme, we compute a cover Rдr eedy with a guaranteed bound
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Figure 6: Architecture of the Argus prototype.

|Rдr eedy |

|Ropt |
= O (log |T |) [16]. In each round, the algorithm greedily

picks the set that covers the largest number of uncovered targets,

updates the sets and repeats until all targets are covered. Using the

notion of deviation we used for optimizing the viewing direction per

candidate location, we can also rank di�erent candidate locations

according to the quality of coverage they can o�er. At iteration i ,
among all candidates {(x , α̂ )} that can cover the maximum number

of targets, we favor the one achieving the minimum f1 (x , α̂ ,α
∗).

�e greedy algorithm will then return a coverage scheme providing

be�er views while still approximating the minimum number of

cameras needed.

To obtain an O (logn)-approximation, the comprehensive set

of candidates P is used. As sweeping over P to generate R takes

O (N 5) steps, we loosely bound the time complexity of the proposed

approximation algorithm by O (nN 5). Similarly, de�ning a set of

con�gurations
ˆR using

ˆP from the heuristic spatial discretizer

results in an O (
ρ ·Rmax
ϵa ·ϵr · n

2N ) algorithm.

4 IMPLEMENTING ARGUS
Our goal is to develop a fully autonomous instance of Argus to

measure the overhead of the OLSC Solver under realistic conditions.

We build upon our earlier work on developing an autonomous

testbed for multi-drone experiments [31, 47]. Figure 6 depicts the

architecture of the Argus prototype that we fully implement as

three modules: Central, Client, and Multi-homed.

�e Central Module is responsible for localizing quadcopters and

targets in 2D and running the OLSC Solver. �e OLSC Solver runs

only the BCPF Sampling algorithm as it is more e�cient while

being competitive to the approximation algorithm. In our setup,

the Central Module is run on a Lenovo �inkPad Y50. �e Central
Module uses a master camera to obtain the input for its UAV and
Target Localizer component. We use an Axis 213 PTZ network

camera located directly above the testbed area. �e master camera

is connected to the Central Module through an Ethernet cable and

provides images at a frequency of 30 Hz. �e UAV and Target
Localizer �lters the noise and locates all quadcopters and targets

Figure 7: EPU setup.

in the image. Each image is then passed to the Adaptive Tracker
which makes use of the last known location of each drone or target

to localize it in the scene. �is approach reduces the processing

time of the localization step by performing local searches in the

image for drones and targets.

A Client Module is the mobile camera component of the system.

We choose a quadcopter platform for its low-cost, small size, and

maneuverability even in small spaces. In particular, we use the

Parrot AR.Drone 2.0 [33] which is equipped with an ARM processor

running an embedded Linux 2.6.32 BusyBox. �e Parrot AR. Drone

2.0 is also equipped with two cameras: a front 720p camera with a

93
◦

lens and a vertical QVGA camera with a 64
◦

lens. We mainly

use the front camera in our experiments. We allow the client to add

as many sensors as needed which can help obtain more surveillance

information (e.g., depth sensors) or be�er navigate the drone (e.g.,

accelerometers). To this end, we use an External Processing Unit

(EPU) which collects recorded video from the camera and sensory

readings from the external sensors. Communication between the

drone and the EPU is performed over Wi-Fi.

For the EPU, we use Intel Edison which is an ultra-small comput-

ing device powered by an Atom system-on-chip dual-core CPU at

500 MHz and 1 GB RAM. Intel Edison has integrated Wi-Fi, Blue-

tooth, 50 multiplexed GPIO interfaces, and runs Yocto Linux. �e

EPU is powered by a Ba�ery Block. Additional sensors are hard-

wired into the EPU using an Arduino block. We use an Inertial

Measurement Unit (IMU) as the external sensor in this setup. �e

IMU improves the autonomous navigation of drones by providing

�ner grain yaw angles to help with drone orientation. Another

bene�t of mounting EPUs on quadcopters is the extra processing

power and added �exibility they o�er. We can install our own

drivers, operating systems, integrated sensors, and overcome the

typical closed-nature restriction of o�-the-shelf quadcopters. We

a�ach the EPU on top and close to the center of gravity of the drone

to avoid disturbing the balance and stability of the vehicle. �e

EPU setup is shown in Figure 7.

�e Multi-Homed Module is a special set of sub-modules that can

belong to either the Central or Client module. �e �exibility of

housing its sub-modules allows easy migration between a central-

ized and a distributed platform. We use two such sub-modules: UAV
Flight Navigator and Algorithmic Processor. �e UAV Flight Navi-
gator receives a set of parameters from the UAV Localizer (i.e., 2D
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Drone 1

Drone 2

View of drone 2 View of drone 1

Figure 8: Experimental setup.

Horizontal Rotation Hovering

Motion

Power (Wa�) 65.625 68.750 61.125

Energy per meter (Joule/m) 65.630 68.750 N/A

Table 1: Energy consumption of typical drone maneuvers
measured over time (i.e., power) and distance traveled.

coordinates) and the IMU (i.e., yaw angles) and controls the drone

through its navigation parameters to properly �y to the desired

coordinates. �e Algorithmic Processor handles any sensory infor-

mation processing (i.e., Fine Grain Context Detector functionalities).

Experimental setup: �e testbed covers an area of 30m2
where

we place one to �ve synthetic targets positioned in con�gurations

that require a maximum of two drones (Figure 8); for scenarios

with one to three targets, we only need one drone for coverage, and

for scenarios with four or �ve targets, we need two drones. Our

target apparatus is a white box mounted on top of a podium with

a printed face a�ached to one of its vertical sides to represent the

signi�cant perspective. A le�er “T” on the top side of the box helps

simplify location and orientation estimation.

Noting that drone control and sensory information analysis

are processing-intensive operations, we aim to achieve real-time

processing with minimal latency. To this end, we handle the au-

tonomous control of drones on the Central Module and distribute

the processing of video feeds from each drone under the Client
Module running on the drone’s EPU to detect faces on the sides of

targets. We set Rmax = 2m and θ = 75
◦
, which is slightly smaller

than the camera’s actual AOV, to avoid cases where covered targets

barely �t in the captured frame.

Real-time adaptation to target mobility: Argus needs to re-

peatedly invoke the OLSC Solver to respond to updates in the lo-

cations of either targets or obstacles. As shown in Section 5, the

algorithm can take up to a few seconds based on the number of

targets. Until a drone is assigned a new con�guration, decisions

have to be made locally by each drone to respond to target mobil-

ity in real-time. Argus allows drones to hover in place or move

horizontally for short distances to maintain target coverage using

standard tracking algorithms [32]. Local decisions, based on the

energy footprint of each maneuver, are computed on the EPU to

minimize the cost of the proposed strategy. Table 1 summarizes

the power consumption of typical drone maneuvers. To avoid large

rotations or displacements, drones cooperate to keep targets in view

[24]. �is autonomous behavior also serves as a fallback strategy if

the communication link between the Central Module and the drone

is broken.

5 EVALUATION
We start our evaluation by examining the behavior of Argus on

the testbed. We compare the new OLS model to the traditional

model of targets as mere points and analyze the overhead of the

OLSC Solver within the system. �en, we evaluate Argus at scale

via simulations and compare the proposed algorithms for the OLSC
against a baseline.

5.1 Argus Evaluation
We demonstrate the pitfalls of traditional target coverage algo-

rithms, where target size and orientation are not taken into account

[44], by comparing them to Argus in a realistic se�ing. �en, we

break down the delays in the presented system and compare against

the delay introduced by the OLSC Solver.
OLS vs. blips on the radar: To demonstrate the advantages of

the proposed model, we take for example the surveillance footage

in Figures 9, 10, and 11. Recall that these images are captured

by the master camera and the front cameras on each drone. We

choose this particular target con�guration to put the quality of

coverage of a typical target coverage algorithm in contrast with OLS.

Figure 9(a) shows two targets covered from the opposite direction

of their signi�cant perspective because typical coverage algorithms

do not take target orientation into account. Moreover, typical

target coverage algorithms do not take target size and potential

occlusions between targets into account, which is demonstrated in

Figure 10(a) where one target occludes two other targets. WhenOLS
is employed, these issues are resolved and cameras are positioned to

properly cover the targets as shown in Figures 9(b) and 10(b). Note

that the generated con�gurations are based on target width and

camera constraints (e.g., Rmax of 2m) which represents a constraint

on the quality of images used for face detection.

Implementation delay breakdown: Figure 12 shows the CDF

of the processing time per frame, which captures the overall process-

ing performed by the Central Module apart from the OLSC Solver.
�is processing includes image fetching, decoding and preprocess-

ing, target localization, drone localization and communication. Our

target apparatus can be detected e�ciently within a few millisec-

onds. �is reduces the processing time per frame as complex targets

would take longer to detect (e.g., 120ms per frame for human body

orientation estimation [22]).

�e di�erence in processing time per frame for one to three

targets and four and �ve targets is dominated by the overhead of

handling the extra drone. �is added overhead can be seen in the

CDF of localization time in Figure 13. Recall that when the drone

makes large displacements, locality over consecutive frames is lost.

�is occasionally forces the algorithm to search the entire frame,

resulting in the skewed shape of the CDF observed in Figure 13. In

our experiments, the UAV Localizer has to be invoked at a minimum

frequency of 8 Hz for smooth control of the drone.
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(a) Targets may be covered from behind.

(b) Target orientation is taken into account.

Figure 9: Comparing the view from
Drone 1 under a typical target coverage
algorithm (top) and OLSC (bottom).

(a) Targets may occlude one another.

(b) Potential occlusions are taken into account.

Figure 10: Comparing the view from
Drone 2 under a typical target coverage
algorithm (top) and OLSC (bottom).

(a) Drones cover targets from wrong angles.

(b) Drones properly cover all targets.

Figure 11: Top views from the master
camera showing drone con�gurations
corresponding to Figures 9 and 10.
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Figure 12: CDF of processing time per frame including im-
age fetching, target and drone localization, and drone com-
munication.
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Figure 13: CDF of processing
time of the UAV Localizer.
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Figure 14: CDF of processing
time of the OLSC Solver.

OLSC as a component of a surveillance system: We com-

pare the processing time per frame, which corresponds to the over-

head of the Coarse Grain Context Detector, to the overhead of the

OLSC Solver (Figure 2). Figure 14 shows the CDF of the processing

time of the OLSC Solver for the number of targets in our tests. �e

solver is implemented in MATLAB and we expect it can be signi�-

cantly optimized. Still, with �ve targets, the solver can be invoked

once for every three processed frames. As mentioned in the previ-

ous section, several techniques can be exploited to maintain target

coverage while the solver is running. �is task is made easier by

the ability to invoke the solver at a relatively high frequency (i.e.,

one third the frequency of updates in the input parameters).

5.2 Argus at Scale
We evaluate, through MATLAB simulations, the performance of the

proposed coverage algorithms under large scale conditions that we

cannot test on the prototype. We compare the performance of the

approximation algorithm to the BCPF sampling heuristic with two

levels of granularity for angular sampling using an ϵa of 0.01 and

0.1 rad and an ϵr of Rmax .

As a baseline for comparison, we present a grid sampling
heuristic. We use a simple discretization of the search space: a uni-

form grid of ϵ × ϵ cells. As ϵ → 0, grid points would hit all possible

intersection areas of target CPFs. Ifw ×h are the dimensions of the

bounding box of T , the number of grid points will be O (w ·hϵ 2
), but

is otherwise independent of |T |. Treating these points as candidate

locations, we generate representative coverage con�gurations at

each point by an angular sweep before running the greedy selection

scheme, which amounts to a runtime of O (w ·hϵ 2
· nN ). We use this

naive approach to verify the e�ectiveness of our proposed method

in �nding appropriate candidate points to minimize the number of

cameras needed. To do so, we use relatively small instances of OLSC
such that ϵ need not be too small and the runtime and memory

requirements of the grid heuristic are feasible.
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Figure 15: Comparing all algorithms for
increasing numbers of targets.
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Figure 16: Comparing all heuristics for in-
creasing numbers of targets.
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Figure 17: E�ect of varying Rmax for a
�xed number of targets.

Parameter Range Nominal value

Dimensions 100m × 100m 100m × 100m

Target Width 1m 1m

AOV 40
◦

- 140
◦

100
◦

Target count 10 - 140 30 (small), 80 (large)

Rmax 10m - 50m 20m (small), 30m (large)

Table 2: Simulation parameters.

We evaluate the algorithms in the extreme case where all present

objects are targets (i.e., no obstacles). Since both targets and ob-

stacles act as occluders while only targets need to be covered, this

setup requires maximal computations for the chosen number of

objects. �e goal of this evaluation is to show the e�ect of changing

the number of targets, range, and AOV on the number of drones

and processing time required to perform the coverage task under

the proposed model. Targets are placed at random locations with

random orientations over the area of interest such that they do not

overlap. �e default values of simulation parameters are shown in

Table 2 for both small and large scenarios. We use small scenarios

to evaluate the approximation algorithm, which su�ces to show

the advantages of sampling, and use larger scenarios to compare

the di�erent heuristics. We use three resolutions of grid sampling:

Grid 10x10 (sparse), Grid 20x20 (medium) and Grid 50x50 (dense)

for ϵ set to 10m, 5m and 2m, respectively.

Figure 15 shows the e�ect of increasing the number of targets.

�e approximation algorithm produces the best performance in

terms of the number of cameras required while taking orders of

magnitude more time than sampling approaches due to its higher

complexity. �e approximation algorithm exceeds a minute per

calculation for less than 25 targets while BCPF sampling computes

a coverage for 140 targets in around a minute with ϵa = 0.1 rad .
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Figure 18: E�ect of varying angle of view (AOV) for a �xed
number of targets.

Figure 16 contrasts the performance of sampling approaches in

large scale scenarios. Grid sampling provides a comparable number

of cameras for small numbers of targets where it is unlikely to have

compact con�gurations of CPF intersections that grid sampling

might miss. However, it is clear that BCPF sampling is superior in

terms of the number of cameras. Moreover, for a moderate ϵa of

0.1 rad , BCPF sampling outperforms grid sampling requiring 12%

less cameras and running up to 2x faster on 140 targets.

Figure 17 shows the e�ect of increasing Rmax which increases

the area covered by each CPF. Having larger CPFs increases the

number of regions to be considered in the approximation algorithm

and the number of CPFs that a sample point can belong to in the
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sampling approaches. On the other hand, changing the value of

the AOV, shown in Figure 18, does not impact the processing time

by much as it does not increase the area of the CPF considerably.

However, it increases the number of targets included at each step

of sweeping which reduces the number of cameras needed for

coverage.

Based on our simulation results, BCPF sampling is the method

of choice for a wide range of scenarios as it combines time and

resource e�ciency especially for large numbers of targets.

6 RELATEDWORK
Area and target coverage: �e goal of area coverage algorithms

is to detect any activity of interest within a certain area in a sensor

network deployment. Several approaches to area coverage have

been studied including static randomly deployed sensors [12] and

strategically placed mobile sensors [19] using either isotropic [25]

or anisotropic sensors [56]. �e related problem of barrier coverage

was studied in [35], where the objective is to detect any targets

crossing the barrier into an area of interest. To cover a set of tar-

gets within an area, target coverage algorithms were studied in

randomly deployed sensors [1, 4, 29], or strategically placed di-

rectional sensors [43, 44]. Target coverage using static randomly

deployed Pan-Tilt-Zoom (PTZ) cameras, that possibly zoom in to ob-

tain be�er views, was shown to be NP-hard and a 2-approximation

algorithm was presented [29]. We propose a more realistic model for
target coverage by visual sensors that greatly enhances the point model
typically used by earlier algorithms [5]. Our approach requires fewer
sensors compared to area coverage techniques as it only a�empts to
cover the present targets rather than the whole area of interest. We es-
tablish lower bounds on minimizing the number of sensors required by
the new model [46] and develop a matching approximation algorithm
in Section 3.

Full-view coverage: Full-view coverage is a variant of area

coverage with the extra objective of ensuring that any target is

covered from all angles [53]. [55] studies the necessary conditions

for full-view coverage in static camera deployments and [28] stud-

ies full-view coverage using heterogeneous mobile cameras. Full

view barrier coverage was then introduced [52] and further ex-

tended to accommodate stochastic deployments in [57]. Taking

self-occlusions into account, ensuring all sides of a convex target

are always visible was studied in [49]. Our proposed approach is
di�erent in two aspects: 1) It overcomes occlusion scenarios and takes
target size into account in addition to target orientation. 2) It is con-
cerned with target coverage rather than area coverage which is the
main concern of full-view coverage.

Video capture using drones: �ere has been a growing inter-

est in using drones and drone swarms for surveillance and video cap-

ture [11]. In such applications, several challenges including target

mobility and low quality footage (e.g., due to distance) were studied

in [26]. For mobile target tracking, using either a single drone [41]

or multiple drones [39] can be used for persistent tracking. Such

applications focus on target coverage without restricting the angles

from which targets are viewed. Autonomous cinematography is

another application for drones, beyond coverage and tracking, the

aesthetic quality plays a key role in viewpoint planning [30]. In

earlier work, we developed several target coverage algorithms for

targets represented as points and deployed them on our testbed

[31, 43, 44, 47]. In this paper, our work leverages recent advances in
drone technologies to develop an autonomous system that utilizes our
enhanced target model and demonstrate the feasibility of running
the proposed coverage algorithms on a real system. We envision ex-
tensions of the proposed model to accommodate speci�c aesthetic or
gesture capture requirements to allow more control over the quality
of coverage as required for persistent tracking and cinematography.

Art Gallery Problem: A classical problem in discrete and com-

putational geometry asks for the minimum number of guards re-

quired to see every point in an art gallery represented by a polygon

with or without holes [50]. Several variants were introduced con-

straining guard placement (e.g. point, vertex, or edge) and coverage

(e.g., star shaped) [37]. In particular, the art gallery illumination

problem considered guards having a limited angle of view [6, 10].

Visibility algorithms have found many applications in wireless com-

munications, sensor networks, surveillance, and robotics. However,

several variants were shown to be NP-hard [45]. In addition, in-

approximability results for art gallery coverage with and without

holes were shown in [20] and also for the illumination of art gal-

leries without holes [2]. On the approximation side, the works

in [18, 23] presented algorithms for the coverage of art galleries

with and without holes, respectively. We se�le the hardness and
inapproximability of art gallery illumination for polygons with holes
and use this to prove the hardness of OLSC [46]. We also present a
best-possible approximation algorithm for OLSC based on a spatial
subdivision derived from the coverage constraints. �e novelty of our
algorithm lies in the incorporation of a limited angle of view camera
model with our newly proposed target model. Earlier approximation

algorithms relied on triangulations [18] or sampling [23] while

assuming omnidirectional cameras.

7 CONCLUSION
We presented Argus, a system that uses drones to provide be�er

coverage of targets taking into account their size, orientation, and

potential occlusions. We started by introducing OLS, a novel geo-

metric model that captures wide oriented targets and the conditions

necessary for their coverage. �en, we formulated the Oriented Line
Segment Coverage Problem (OLSC) that aims at minimizing the num-

ber of cameras required to cover a set of targets represented by this

new model. We devised a best-possible O (logn)-approximation

algorithm and a sampling heuristic that runs up to 100x faster

while performing favorably compared to the provably-bounded ap-

proximation algorithm. Finally, we developed a fully autonomous

prototype that uses quadcopters to monitor synthetic targets in or-

der to measure the overhead of the proposed algorithms in realistic

scenarios and show the improved quality of coverage provided by

the new model.
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