CoreSync: A Protocol for Joint Core Scheduling
and Overload Control of us-Scale Tasks

Bhaskar Pardeshi, Eric Stuhr and Ahmed Saeed
Georgia Institute of Technology
Atlanta, Georgia

Abstract—Modern servers employ multiple resource manage-
ment algorithms, including fast core schedulers and overload
controllers to balance application performance and resource
utilization. Individual algorithms and their amalgamation are
required to meet these tight performance requirements. In this
paper, we demonstrate that state-of-the-art core schedulers and
overload controllers produce poor performance when deployed
simultaneously. Fundamentally, the design assumptions of each
controller are violated by the other controller. An overload
controller assumes that all resources are dedicated to an ap-
plication, while a core scheduler assumes that all incoming load
will be admitted. To overcome this fundamental limitation, we
present CoreSync, a server-driven credit-based protocol for joint
core scheduling and overload control. CoreSync relies on the
basic idea that the admitted load should be proportional to the
allocated resources. However, strict proportionality can lead to
low utilization when admitted load does not materialize at the
server (e.g., when demand drops). Thus, CoreSync uses partial
proportionality to balance latency, throughput, and utilization.
Our evaluation across synthetic and real-world workloads shows
that CoreSync outperforms state-of-the-art schedulers and over-
load controllers. In particular, in overload scenarios, CoreSync
improves throughput by up to 6%. At low loads, CoreSync
reduces the 99th percentile latency by up to 1.7x and improves
CPU utilization by up to 1.4x.

I. INTRODUCTION

Large-scale servers operate under strict requirements on the
performance they deliver, while maintaining high levels of
utilization. Operators expect requests to finish within tight
Service Level Objectives (SLO) while consuming exactly the
amount of resources they need, no more and no less. To satisfy
these requirements, two key controllers are employed: high-
frequency CPU core scheduling to precisely allocate only the
needed amount of resources for an application [1]-[8] and
overload control to only admit load that can be processed by a
server while meeting its SLO [9]-[14]. A core scheduler aims
to maximize CPU utilization by allocating idle CPU cycles to
preemptable best-effort applications when it is not being used
by a latency-critical application. An overload control algorithm
aims to balance the throughput and latency of latency-critical
applications when a server is overloaded, admitting enough
load to maximize application throughput without building long
queues. Previous work studies and develops each controller in-
dependently.However, both types of controller can and should
be employed simultaneously.

In this paper, we find that existing core schedulers and
overload controllers produce poor performance when deployed
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jointly. The fundamental reason behind poor performance is
that the assumptions made in the design of each controller are
violated by the other controller. In particular, core schedulers
assume that all load will be admitted to the server, ignoring the
throughput of the latency-critical application as an evaluation
metric. On the other hand, overload control algorithms assume
that the entire server capacity is allocated to the application,
attributing changes in performance solely to their admission
control decisions. However, when the two algorithms are
combined, the overload controller can react to a reduction
in the number of allocated cores by reducing the number of
admitted requests, harming the throughput of latency-critical
applications. Moreover, existing core allocation policies react
to short-term load at the server, ignoring potential requests
in flight, leading to high tail latency even at low loads. We
demonstrate that the tradeoffs between the throughput and
latency of a latency-critical application and the overall CPU
utilization are fundamental to state-of-the-art controllers and
cannot be overcome with simple parameter tuning (§II).

To address these challenges, we develop CoreSync, server-
driven credit-based protocol that jointly optimizes core
scheduling and overload control (§III). CoreSync employs
a delay-based controller for adjusting the total volume of
admitted load (i.e., the size of the credit pool), issuing more
credits if delay is below a certain target and fewer credits when
delay is above the target. Moreover, it employs a simple delay-
based core scheduling policy, allocating additional cores if the
maximum per-core delay exceeds a configurable target, much
smaller than the target for credit control. The basic idea behind
CoreSync is to maintain proportionality between the admitted
load and the allocated CPU capacity. Strict proportionality
is undesirable. For example, overcommitment in admission
control is essential to ensure high utilization at low loads [9],
[10], [15], [16]. Strict proportionality can leave allocate cores
only to leave them idle when admission is overcommited
at low loads. Thus, CoreSync employs partial proportional-
ity where the majority of admitted load is proportional to
allocated cores and a minority is overcommitted. To reduce
interference between the two controllers, CoreSync prevents
core deallocation if the incoming load to the server matches
its capacity. It detects such scenarios based on the behavior
of the admission controller. Specifically, successive reductions
in the number of issued credits are used as an indication of
persistent overload, requiring the allocation of all cores to the
latency critical application.



We implemented CoreSync as a part of the Caladan li-
bOS [2]. Our extensive evaluation of various workloads
demonstrates that CoreSync always lies on the Pareto frontier
of the three evaluation metrics: the latency and throughput
of the latency critical application and overall CPU utilization.
In particular, CoreSync outperforms four state-of-the-art core
schedulers when they are deployed with the Breakwater, a
state-of-the-art overload controller. We compare CoreSync to
the core scheduling policies used in the Shenango [I] and
Caladan [2] systems. We also compare CoreSync with the
proactive Utilization Range and Delay Range policies [3].
When load is below the capacity of the server, all systems
provide comparable throughput. However, CoreSync matches
the low CPU utilization of Shenango and Caladan, while
providing up to 1.7 x lower 99th percentile latency. Moreover,
it improves CPU utilization by 1.4x compared to Utiliza-
tion Range and Delay Range, while providing comparable
tail latency. When the system is overloaded, all systems
achieve comparable latency. However, CoreSync delivers up
to 6% higher throughput than Shenango, Utilization Range,
and Delay Range, while remaining within 2-3% of Caladan.
The CoreSync implementation and reproduction scripts are
available at https://github.com/GT-ANSR-Lab/CoreSync.git.

II. BACKGROUND AND MOTIVATION
A. Background

High-frequency core scheduling. The basic idea of high-
frequency core allocation algorithms is to maximize CPU
utilization, by allocating idle resources to a preemptable best-
effort application, without harming the performance of the
latency critical application. There has been significant interest
in supporting this behavior in software [1]-[6], [17] and
hardware [7], [8], [18], [19]. Fast core allocation is combined
with load balancing, typically employing work stealing [20] or
Join-Bounded-Shortest-Queue (JBSQ) [8], [21]. We focus on
fast scheduling of tasks that run to completion [1]-[3], [19].
A recent study compares the performance of multiple core
allocation policies, classifying them into two categories: reac-
tive policies and proactive policies [3]. Both categories allocate
additional cores to the latency-critical application, one at a
time, upon detecting high delay or high CPU utilization. The
main difference between the two classes is how they deallocate
cores. Reactive policies deallocate a core when the core fails
to find work. Thus, reactive cores waste resources searching
for work to steal from other cores, potentially busy-polling for
long durations before a core is deallocated. Proactive policies
observe the average load on the system, across all cores, and
deallocate cores when the load drops below a configurable
threshold. Thus, proactive policies avoid the overhead of
searching for work when the load is lower than the capacity.
Average core utilization and average queueing delay across
cores can be used to observe the average load on the system.
Overload control. The fundamental idea behind overload
control is shedding load that exceeds the server’s capacity,
potentially redirecting it to other replicas or triggering the
allocation of additional resources. Overload controllers can be

used directly by clients or indirectly through load balancers.
There are three broad categories of overload controllers: 1)
client-based, where clients estimate the state of the server to
determine a limit on the number of requests it can have in flight
to the server [12], [13], 2) active queue management (AQM)
at the server [11], [22], where the server drops requests if it
estimates that they will violate their SLO, and 3) server-driven
admission control, where the server issues credits to clients,
indicating that it can receive requests [9], [10]. Overload
control is typically part of the RPC communication logic.
The admission control and load shedding decisions made by
the server are communicated to clients or load balancers,
depending on the deployment, as a part of the RPC protocol.
Combining both controllers changes their individual as-
sumptions, creating a three-way tradeoff. Core scheduling
policies are designed assuming that all requests from the
latency-critical application will be admitted to the server, im-
plying that the throughput of the latency-critical application is
a non-concern. Thus, core schedulers are designed to balance
the utilization of idle CPU capacity and the latency of the
latency-critical application. In contrast, overload controllers
are typically designed to balance the latency and through-
put of a latency-critical application. Overload controllers are
designed assuming that all server resources are allocated to
the latency-critical application. Thus, the utilization of idle
capacity at low loads is a non-concern for overload controllers.

The joint deployment of overload control and fast core
scheduling changes their individual assumptions. In particular,
it introduces a tradeoff between CPU utilization and the
throughput of the latency critical application. For example,
under overload, an overload controller that employs an Ad-
ditive Increase / Multiplicative Decrease (AIMD) admission
controller can momentarily reduce load on a server when it
multiplicatively decreases load admission. Such a momentary
reduction in load can lead fast core schedulers to reduce the
number of allocated cores to the latency critical application,
leading to high latency or even throughput degradation. More-
over, fast core schedulers only take into account load at the
server, ignoring load in flight, leading to poor tail latency at
low loads. We quantify these problems next.

B. Analysis of the Tradeoff Space

We demonstrate that existing schemes cannot jointly opti-
mize the latency and throughput of latency-critical applications
as well as the utilization of idle CPU cycles. We explore
the tradeoff space by attempting to configure state-of-the-art
algorithms to balance all three metrics. We choose the Caladan
core allocation policy as representative of reactive core allo-
cation policies. We choose the Utilization Range policy as a
representative of proactive core allocation policies. We employ
Breakwater as an overload control system. All three controllers
are implemented in the Caladan library operating system.
We evaluate their performance using a synthetic workload
composed of requests whose service time is exponentially
distributed with an average execution time of 10us. Our eval-
uation setup is presented in detail later (§1V-A). We evaluate



server performance in two broad scenarios: below capacity
(not overloaded) and near or beyond capacity (overloaded). In
the below capacity case, we classify loads of 20%, 50%, and
80% of server capacity as low, medium, and high, respectively.
In the near or beyond capacity case, the load is 100% or more
of server capacity.

Throughput v/s utilization. When load is below capacity,
the overload controller admits all load, leading all policies
to achieve the same throughput. Their achieved utilization
depends on their configurations and workload burstiness [3].
When load exceeds capacity, utilization is typically near 100%
as load is enough to keep all cores busy. However, we observe
that different core scheduling policies yield different levels of
throughput. Proactive core scheduling policies achieve 2-4%
worse throughput than reactive policies. To understand this
tradeoff, consider a server with 4 CPU cores, each handling
100k RPS for 10 ps requests (total 400k RPS), and a 10 ps
RTT with 100 clients. Such a server needs at least 8 in-flight
requests per RTT for full utilization. To maintain consistently
high utilization, controllers allow queueing up to a target delay
(e.g., 80 ps) and overcommit credits [9]. Here, the server can
distribute up to 36 credits; even if all are used at once and
perfectly load balanced, the maximum queueing delay is 80
us (9 requests/core, 9th waits for 8x10 ps).

Assume the 100 clients send bursts of up to 36 requests in
total. Since such bursts keep delay below the 80 ps target,
the controller remains in additive-increase mode, growing
the credit pool while the core scheduler keeps all cores
allocated. When the pool reaches 436 credits, assume that all
clients send a large burst simultaneously, fully utilizing the
overcommitted credits. With perfect load balancing, each core
gets 109 requests, and the last waits 1080 ps (uniform service
time). This delay triggers a 25% multiplicative decrease in
admitted load, reducing credits to 327 [9]. The sudden drop
causes some steady-rate clients to send fewer or no requests,
lowering utilization. A proactive policy will react to this load
drop by deallocating a core. Arriving requests face longer
queues as they await the core to be reallocated. Long queues
trigger multiplicative decrease. This behavior continues to
repeat, lowering the average number of admitted requests (i.e.,
leading to low throughput). This problem is amplified with
aggressive AIMD-based overload controller which can revoke
a large number of credits when overload is detected (e.g.,
with a multiplicative decrease factor of 0.5). However, we
still observe it even with a smooth AIMD controller using
a multiplicative decrease factor of 0.02; the value used in all
our experiments. Reactive policies do not suffer from the same
problem, because they poll for work before deallocating cores.
Busy polling can lower utilization at low loads but improves
throughput when the system is overloaded. Proactive schedul-
ing can improve utilization at low loads but harms throughput
at high loads. We have separately shown analytically that
interference between controllers considerably degrades their
worst-case performance [23].

Utilization v/s latency. When load is below server capacity,
existing core scheduling policies provide knobs to balance
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Fig. 1: Latency v/s Utilization, below capacity, for exponen-
tially distributed workload with an average of 10us. Increasing
the polling interval of Caladan improves latency at the expense
of utilization. The performance of CoreSync dominates the
performance of Caladan under all configurations of Caladan.

these two objectives. Caladan allocates cores in reaction to
queueing delay and polls for work before deallocating a core.
Increasing the queueing delay threshold improves utilization
at the expense of latency. On the other hand, increasing
the polling duration improves tail latency at the expense
of utilization. We argue that existing policies are myopic,
leading to a strict prioritization between latency and utilization.
Increasing the scheduler’s reaction time degrades utilization
by making it harder to park cores but does not necessarily
improve latency because it does not account for in-flight
requests. To highlight this behavior, we study the performance
of the Caladan allocation policy while varying its busy polling
interval for a synthetic workload (Figure 1). We contrast its
performance with that of our proposal, CoreSync, to highlight
the opportunity gap.

Clearly, increasing the polling interval sacrifices utilization
to improve tail latency. However, CoreSync dominates the
performance of Caladan under all configurations, with several
Caladan configurations not being on the Pareto frontier of
latency and utilization. Under all loads, CoreSync achieves
comparable or better latency than Caladan with a 10us polling
interval while improving utilization by up to 13% (that is,
using one less core to handle the same load). Slight im-
provements in tail latency are possible because CoreSync
takes into account requests in flight when making its core
allocation decision. Increasing the polling interval beyond
10ps does not improve Caladan’s latency, but can lead to
poorer utilization. Thus, we conclude that configuring existing
knobs for balancing utilization and latency in core allocation
algorithms might not lead to Pareto optimal performance,
requiring finer grain control that takes into account overall
load on the system, including requests in flight.

Throughput v/s latency. Overload controllers provide knobs
to navigate the tradeoff between throughput and latency when
the server operates near its capacity. For example, Breakwater
is delay-based, generating more credits when delay is below a
given target delay and less credits when delay is higher than
the target delay. Configuring Breakwater to have a smaller
target delay reduces tail latency but harms throughput. The
recommended configuration for a workload with an average
service time of 10us is a target delay of 80us. Setting a smaller



target delay for Breakwater (e.g., 40us) reduces throughput by
up to 10% at high loads while reducing tail latency by 20-30%.
In contrast, sacrificing latency can improve throughput. Thus,
it is possible to achieve good throughput and utilization if the
tail latency is doubled. However, there are no existing policies
that balance all three metrics.

Summary. Different performance tradeoffs are observed de-
pending on load. At low loads, existing schemes maximize
throughput but sacrifice latency and/or utilization. In over-
load scenarios, existing schemes optimize latency but sac-
rifice throughput. Attempting to optimize throughput when
the system is overloaded leads to worse utilization at low
loads. Moreover, we observe that existing algorithms can be
tuned to optimize for a specific performance metric. However,
their performance is not Pareto optimal. We conclude that a
new policy is needed to optimize core scheduling decisions
given overload control decisions, and vice versa, balancing
throughput, latency, and utilization.

C. Challenges

The fundamental limitation of existing core schedulers and
overload controllers is that the design of one controller ignores
the behavior of the other. Moreover, the desired combined
behavior of both controllers depends on the load level. In
particular, coordination between overload control and core
schedule needs to differentiate between manageable load and
unmanageable load made manageable by the overload con-
troller. This issue leads to the following challenges:

1. Differentiating between persistent overload of all available
cores and momentary spikes in demand with few allocated
cores. Both scenarios can result in a high delay. Moreover, an
overloaded system can still experience low delay when a good
overload controller is used because the admitted load exactly
matches the available capacity. An overload controller should
admit less load only when the system is truly overloaded. On
the other hand, a core allocator should never deallocate cores
when the system is overloaded. Thus, we need a signal that
detects persistent overload scenarios.

2. Coordinating two controllers that operate at comparable
timescales. Core allocation and overload control belong to
different parts of the system. Core allocation is typically a
function of the operating system. Overload control is typically
part of the RPC layer. Tight integration of their logic can
lead to untenable solutions that can never be deployed in
practice (e.g., giving the RPC layer privileged access to
the operating system). Moreover, both controllers operate on
microsecond timescales. A complex coordination mechanism
can easily incur significant CPU overhead, potentially harming
performance. Thus, coordinating between the two controllers
requires a non-intrusive approach that does not incur signifi-
cant processing overhead.

3. Short request service times. Our focus is on microsecond-
scale tasks, requiring techniques that can detect and react to
overload at high frequency without incurring high overhead.
In particular, overload control requires coordination between
the server and the clients. Generating a coordination message
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Fig. 2: CoreSync architecture

consumes resources comparable to those of requests that
take a few microseconds. Thus, the overload controller must
require minimal coordination between the server and the client.
In addition, the core allocation policy should minimize the
queueing delay.

4. The need to handle a large number of clients. The above
challenges are exacerbated by the fact that the server should
be able to serve hundreds or even thousands of clients. A large
number of clients leads to incast scenarios, making it harder
to differentiate between persistent overload and momentary
spikes in demand. Moreover, the overhead of admission con-
trol coordination is typically proportional to the number of
clients. Thus, we need a protocol whose overhead does not
grow significantly as a function of the number of clients.

III. THE CORESYNC PROTOCOL
A. Overview

We present CoreSync, a server-driven credit-based protocol
that jointly decides the number of credits to issue to clients,
as well as the number of cores to allocate to serve those
clients. Figure 2 illustrates an overview of the operations of
a CoreSync server and one of its clients. An RPC client
initializes an RPC session by sending a message indicating
its demand in terms of number of requests currently in its
queue. The session initialization message can also include a
request, to reduce the delay of request processing at session
initialization. The server employs AQM to determine whether
to process or drop incoming requests. If a request is processed,
a response is sent to the client, including the number of credits
for future requests. If a request is dropped, a failure message
is sent to the client with the number of credits set to zero. A
single credit allows a client to send one request to the server.
The server will attempt to piggyback credit information on
responses to the clients. However, if a session is inactive (i.e.,
with no requests at the server), the server will generate explicit
messages indicating the allocation or revocation of credits.

The basic idea behind CoreSync is to judiciously maintain
proportionality between the number of credits issued and the
number of cores allocated. Proportionality is desirable, as it
ensures that core allocation decisions take into account all
admitted load to the system, currently being processed and in



flight. Moreover, it limits the maximum burst size at low loads
to a value proportional to the amount of allocated resources,
improving tail latency at low loads. Naively enforcing propor-
tionality is clearly suboptimal. To better understand its limita-
tions, consider that credit-based admission controllers typically
rely on credit overcommitment to ensure high throughput, es-
pecially at low load [9], [15], [16]. Thus, strict proportionality
can severely degrade utilization by allocating more cores than
necessary at low loads. Moreover, an erroneous decision to
deallocate cores at high load can lead to significant degradation
in throughput if strict proportionality is applied. Revoking
credits from sessions that have no pending requests requires
the exchange of explicit messages to inform the client of credit
revocation, consuming CPU and harming utilization.

To avoid the downsides of strict proportionality, we design
CoreSync to offer partial proportionality. In particular, when
load is below capacity, a fraction of the credits are strictly
overcommitted while the remaining credits are allocated pro-
portional to the number of allocated cores. When the server
is overloaded, proportionality is not maintained at all, with
all cores allocated and none permitted to be deallocated, even
as admitted load exhibits sawtooth-like behavior. CoreSync
requires coordination between the core allocation logic in the
operating system and the overload control logic in the RPC
layer. Coordination is done by exposing an API that allows the
operating system to query and atomically modify the state of
the overload controller. Our design focuses on tasks that run
to completion. We leave designing policies for preemptable
workloads to future work.

There are two key design choices in CoreSync: 1) detecting
when the server is persistently overloaded to disable core
deallocation, and 2) designing a strategy for partial propor-
tionality the balances throughput, latency, and utilization. In
the following sections, we examine each of the design choices.

B. Detecting Persistent Overload

Our objective is to develop a lightweight signal that can
differentiate between persistent overload and transient spikes
in demand. The signal is necessary to enable CoreSync to
prevent core deallocation when the server is facing persis-
tent overload. There are two standard signals for detecting
overload: queueing delay and CPU utilization. However, both
signals are not suitable for detecting persistent high load. First,
consider queueing delay or any other queueing statistic (e.g.,
queue length). Even at high load, a good overload controller
should keep queues short (e.g., around or below some target
value). The target queueing delay value is typically picked so
that the latency under low load is not much worse than at
high load. Moreover, in our setting, resources are dynamically
allocated. Thus, it is typical to observe high tail latency at
low load when a large spike of load arrives and requires
additional CPU cores to be allocated. CPU utilization faces
similar issues. An overload controller can create temporary
drops in utilization during its congestion avoidance phase.
Thus, the average utilization of a server utilization will be
very close to 100% but not exactly at 100%. Such behavior

conflates the scenario where the system is facing persistent
overload and when the system is receiving high load and can
afford to park at least one core.

To detect persistent overload, we instead observe the long-
term behavior of the overload controller itself (i.e., over
multiple RTTs). In particular, when an overload controller
experiences persistent overload, the number will be reduced,
eliminating any overcommitment. Moreover, it will fluctuate,
following sawtooth-like behavior. Thus, reacting to a single
multiplicative decrease event might not be an appropriate
signal because it can be caused by a single spike in de-
mand. Instead, we observe credit allocation across sessions.
Reduction due to a transient spike will leave most clients with
several credits. However, when the server is overloaded, credits
will have to be reduced to a level where some active clients
are issued zero credits, especially in the presence of a large
number of clients (i.e., a hundred or more). Note that such
behavior can occur with smaller connection counts as well. It
will just require higher average load by individual connections.
In other words, the system will likely be considered overloaded
at higher offered loads.

There are many possible approaches to implement the track-
ing of per-session credit assignment. We opt for implementing
a light-weight signal to facilitate exchanging state information
between the RPC library and the operating system. In particu-
lar, we use the number of sessions with zero credits to indicate
persistent overload. The RPC library tracks the total number
of sessions that are issued zero credits, called drained sessions.
The operating system atomically accesses the value to detect
persistent overload. Such an overload detection signal can lead
to different system behaviors as the number of clients varies.
With a very large number of clients, it is highly likely that at
least one will have zero credits, indicating persistent overload.
Thus, the system will not park any cores, favoring throughput
over utilization. The inverse is also true. With a small number
of clients, the likelihood that one of them has no credits is
low, except when the system is highly overloaded. Thus, the
system in such cases will favor utilization over throughput. We
examine the sensitivity of CoreSync to the number of clients
in Section IV-D and observe this behavior.

C. Proportional Credit and Core Allocation

Basic overload control operations. CoreSync’s basic credit
management operations are constrained by the proportionality
between admitted load and allocated cores. We draw inspi-
ration from Breakwater, a state-of-the-art overload controller.
CoreSync relies on a delay-based AIMD algorithm to control
the number of credits it generates, Creditsotq;. In particular,
if the measured delay of the oldest request in the system, D,,,
exceeds a configurable target delay, D,, the total number of
credits is multiplicatively decreased proportional to the delay.

Dm - Dt
D; ’
When delay is below Dy, credits are additively increased.

Creditsiota < Creditsiorqr - max(l — 3 0.5)

Creditsiptqr <+ Creditsiorar +



Algorithm 1 CoreSync Runtime Scheduling Algorithm

1: Creditsiotq: Total credits available with the server
2: Creditsissueq: Credits distributed to the clients

3: num_sess : Number of clients

4: num_drained_sess : Number of clients with zero credits
5: num_cores: Cores allocated to the application

6:

7: procedure UTHREADSCHEDULE

8: start < time()

9: Cour =0

10: has_started_parking = False

11: if uthread(s) in local or remote runqueue then

12: steal, if required, and jump to uthread context
13: if time() — start < POLL_PERIOD then
14:

15: go to step 11

16: if num_drained_sess > 0 then

17:

18: go to step 11

19: if another core is parking then
20:
21: go to step 11
22:
23: if Credits;ssueq — num_sess > R X num_cores then
24: if not has_started_parking then
25:
26: Csub = (Credits;ssued — num_sess)/num_cores
27: Creditsiotal —= Csup
28: has_started_parking = True
29:
30: go to step 11
31: else
32: park the core
33:
34: Creditsiotal += Csup
35:

36: go to step 9
37: end procedure

AQM decisions are also made based on the value of D,,.
In particular, for every incoming request, if D,, exceeds a
configurable threshold Dg;..p, the request is dropped and a
failure message is sent to its client. Otherwise, the request is
processed. CoreSync atomically modifies Creditsioq Without
interfering with the above logic.

Basic core scheduling operations. We implement a simple
delay-based reactive policy, similar to the Shenango policy,
that allocates additional cores when delay exceeds a config-
urable threshold. Work stealing is used. When a core does
not find work by polling and stealing, it is deallocated.
Deallocation logic is dictated by CoreSync.

Enforcing partial proportionality. CoreSync allocates credits
proportional to the number of allocated cores, while main-
taining a portion of overcommitted credits to ensure high
throughput. Following the above basic operations of credit
generation, when the load is below capacity, the number of
issued credits can grow as an additive increase is applied
repeatedly, leading to overcommitment. CoreSync distributes
credits to all sessions to maximize utilization, ensuring that
any session that can generate load has at least one credit. The

total number of credits generated by CoreSync, CreditSiotais
reflects - credits used by requests currently being processed at
the server, requests in flight to the server, and credits issued
to clients for future demand (i.e., overcommitted credits).
Core schedulers attempt to park cores when demand at the
server drops. Thus, CoreSync enforces proportionality between
allocated cores and requests that might arrive in the next RTT.

To estimate incoming load, CoreSync tracks the number
of issued credits, Credits;ssyeq, indicating the total number
of credits communicated to clients but are not currently
used by requests at the server. The number of issued credits
is made up of two parts Credits;ssueq = Creditsoc +
Creditsyrop, Where Creditsy,o, are proportional credits and
Creditspc are overcommitted credits. Proportional credits are
computed on based on the number of allocated cores N ypes:
Creditsprop = R X Neores, Where R is the proportionality pa-
rameter of CoreSync. The overcommitted credits are computed
such that each session gets at least one credit. Our rationale
is that when the system is receiving a load below its capacity,
each client should be able to submit requests to the server.

CoreSync proportionality logic can read Credits;ssyeds
computed by the RPC library but does not directly change
its value. Instead, the value of Credits;ssyeq is indirectly
changed by modifying the value of Creditsiotq;. Updates
to Creditsiorq take at least a network RTT to impact
Credits;ssucq as credit information are communicated to
clients. Algorithm 1 shows the procedure for proportional
allocation of cores and credits. The procedure is triggered
when a core finishes its current work. First, it attempts to steal
work for a POLL_PFERIOD. Then, it can only park if there
are no sessions with zero credits (i.e., num_drained_sess =
0) and a proportional number of credits have been revoked
from clients. In particular, Creditsprop/Neores credits are
subtracted from the total number of available credits. The
core will busy poll until the value of Credits;ssyeq reaches
its target value. This busy polling improves tail latency by
allowing a core to only park when the maximum possible burst
size has been reduced.

Intuitively, setting a lower value for R causes the partial pro-
portionality to be violated more frequently during core deal-
locations. This decreases C'redits;ssyed, limiting the potential
for large request bursts and thereby improving tail latency.
However, because the deallocating core must busy poll until
the reduction in Credits;ssyeq takes effect, a lower value for
R harms utilization. Conversely, setting a higher value for R
results in fewer violations of the partial proportionality during
deallocations. This allows the core to be parked immediately,
improving utilization. Yet, since C'redits;ssqyeq are not reduced
proportionally in such cases, request bursts may harm tail
latency. The parameter R thus provides a knob for service
operators to balance latency and utilization according to their
objectives. We examine the sensitivity of CoreSync to the
value of R in Section §IV-D.

CoreSync prioritizes the exchange of credit information by
piggybacking it on responses, instead of explicit messages.
Thus, credit revocation starts at active clients, before explicit



messages are sent to inactive clients. This behavior ensures
that when a client is issued a credit, it is not revoked until
the system is experiencing persistent load beyond its capacity.
Thus, setting Creditsoc to be equal to the number clients
ensures that each client receives at least one credit. On the
other hand, configuring the parameter R can increase the level
of overcommitment of the system. Indeed, we find that as
the number of clients increase, R should increase to ensure
that some clients receive more than one overcommitted credit,
ensuring high throughput. In our experiments, we configure
the parameter R statically according to the fixed number of
clients in the test. However, the system could monitor the
number of active clients and adjust R dynamically, linearly
scaling its initial value in proportion to the active session
count. We demonstrate that such linear scaling yields optimal
performance in Section §IV-D.

D. Implementation

We implement CoreSync as part of the Caladan LibOS [2].
Overload control logic is implemented in a custom RPC library
built, extending the Breakwater [9] and Protego [10] APIs.
Core scheduling logic is divided between Caladan’s monolithic
scheduler (IOKernel) and the per-application runtime. Appli-
cations are modified to use the CoreSync RPC library. All
applications are implemented following a dispatcher threading
model: upon receiving a request, a new Caladan thread is
spawned to process it and destroyed after completion. Separate
asynchronous sender threads handle responses. This design
enables accurate queueing delay measurements by simply
tracking the queueing delay of dispatched threads.

The RPC layer exposes a single read/write variable: the total
number of credits. It also exposes three read-only variables:
the total number of active sessions, the number of drained
sessions, and the number of issued credits. Each application
is linked with a separate RPC library and Caladan LibOS
instance, ensuring complete isolation of credit state of one
application from other application’s scheduler.

We use the implementation of the Shenango scheduler,
augmenting its runtime component to implement Algorithm 1.
In particular, we modify the logic invoked when a core fails to
find work. In total, CoreSync adds ~40 lines of code (LOC),
with runtime changes in C and RPC library updates in C++.

IV. EVALUATION
A. Evaluation Setup

Testbed. We conduct our experiments on eleven x1170 nodes
on Cloudlab [24]. Each node is equipped with a 10-core (20
logical cores) Intel ES-2640v4 2.4GHz processor, 64 GB ECC
RAM, and a Mellanox ConnectX-4 25 GbE NIC. The nodes
are interconnected via a Mellanox 2410 switch. The average
and 99th percentile round-trip latencies between any two nodes
are 10 pus and 20 us, respectively. All nodes run Ubuntu
18.04 with Linux kernel version 4.15. All applications are
implemented to run on the Caladan [2] system and are linked
with its runtime. We dedicate one node as the RPC server and

use the remaining ten as RPC clients. The server utilizes up to
16 logical cores to run the target latency-sensitive application.
Workload. We evaluate CoreSync using one real-world and
four synthetic applications. For the synthetic case, we use
workloads with exponential and bimodal service time distribu-
tions. For each distribution, we run the tests for average service
times of 1us and 10us. For the real-world application, we use
Memcached, a latency-sensitive key-value store. Further, we
evaluate the system under different load intensities between
0.1x and 1.5x the system’s capacity. When load is below ca-
pacity, we report results for 0.2 x capacity (low), 0.5 capacity
(medium), and 0.8 capacity (high) for ease of exposition.
When load is near or above capacity, we report results for
1, 1.3, and 1.5x capacity. When all cores are allocated, the
maximum capacity of the system is around 1.2 million requests
per second and 4 million requests per second for 10 ps and 1
us average service times respectively. The system’s capacity
for Memcached is around 3.5 million requests per second.
Load is generated equally by all client machines. Each client
machine simulates a large number of clients by creating more
sessions. Our default is ten sessions per machine. Requests
are generated following an open-loop Poisson arrival process.
Our default workload is the exponentially distributed synthetic
workload with 10us average service time.
Baselines. We compare CoreSync’s performance against mul-
tiple state-of-the-art core scheduling policies. This includes
two reactive policies - Shenango [1] and Caladan [2], and
two proactive policies - Utilization and Delay range [3]. We
use Breakwater [9] as the overload controller for all core
scheduling policies.'
Metrics. We focus on three metrics: the throughput and
latency of a latency critical application and the overall CPU
utilization. When load is below capacity, we report the 99th
percentile (tail) latency of the latency-critical application and
the application’s CPU utilization. Latency is measured for
every request at the client: it includes the time required to
traverse the network, wait in a queue at the server, and
execute at the server. CPU utilization is the percentage of
total (20) cores available on the server. We also measure CPU
utilization as a function of the throughput of a best-effort
synthetic workload. When load is near or beyond capacity,
we report the throughput of the latency-critical application.
Throughput is the number of requests per second whose
responses were received successfully by clients. As discussed
earlier, throughput is almost identical for all policies when
load is below capacity (i.e., within 1% differences). On the
other hand, tail latency is similar for all policies when load is
near or beyond capacity (i.e., within 3% differences).
Parameter Configurations. We have three separate sets of
configurations: the core allocation policy, the overload con-
troller (i.e., Breakwater), and CoreSync.

Core Allocation System Parameters. We use the recom-
mended parameters for each of the studied core allocation

Note that Breakwater was originally evaluated with the all cores statically
allocated to a single application [9].
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Fig. 3: Latency v/s Utilization, below capacity, for exponen-
tially distributed workload with an average of 10 us.

policies. For all policies we use a queueing delay threshold of
5us and allocation interval of Sus. For Shenango and Caladan,
the polling period, before parking a core, is set to 2j1s. Further,
for Utilization range, we use the CPU utilization range of 75-
95%, and for Delay range, we use the delay range of 0.5-1us.

Breakwater Parameters. We use the recommended Break-
water parameters [9]. « is set to 0.1%. [ is set to 2%. The
target delay is set to 80us for requests with 10us average
service times, 45us for those with 1 us average service
times, and 25us for Memcached. In all cases, the AQM drop
threshold is set to twice the target delay.

CoreSync Parameters. CoreSync’s basic overload control
and core allocation operations resemble Breakwater and
Shenango. Thus, we use similar configurations for them. The
CoreSync-specific parameter is the proportionality parameter
R. We set R to 50 for synthetic workloads and 20 for
Memcached. Section §IV-D examines the impact of varying
R on CoreSync’s performance.

B. Overall Performance for Synthetic Workloads

Performance when load is below capacity. The overload
controller admits all load, leading all policies to achieve
comparable throughput. However, they differ significantly in
the way they balance utilization and latency. Figure 3 shows
their achieved performance for the synthetic workload with
exponentially distributed service time and a 10 ps average.
Reactive policies like Shenango and Caladan quickly allocate
cores in response to bursts but also deallocate aggressively
during traffic dips, unaware of potential upcoming bursts.
Thus, we observe that they typically achieve good utilization
at the expense of latency. In particular, CoreSync improves
tail latency by 1.7x compared to Shenango. Caladan remains
on the Pareto frontier offering slightly better utilization (a
reduction of 2%) at the expense of latency (an increase of
16%), as compared to CoreSync.

Proactive policies are less sensitive to bursts created by
overcommitment, maintaining the same number of allocated
cores for a given workload. However, both proactive policies
strictly prioritize latency over utilization. Moreover, the Delay
Range policy is never on the Pareto frontier. At medium
loads, CoreSync improves CPU usage by 1.4x and 1.2x
over Utilization Range and Delay Range policies, respectively,
while maintaining similar tail latency to Utilization Range.
Moreover, it improves tail latency compared to Delay Range

Normalized Throughput

Policy Exponential Bimodal

100% | 130% | 150% | 100% | 130% | 150%

Load Load Load Load Load Load
CoreSync 1 1 1 1 1 1
Shenango 0.942 0.974 0.973 0.939 0.966 0.975
Caladan 1.029 1.007 0.998 0.991 0.997 1.002
Util. Range 1.003 0.988 0.976 0.974 0.976 0.979
Delay Range | 0.979 0.968 0.977 0.962 0.970 0.976

TABLE I: Throughput, near and beyond capacity, for synthetic
workloads with an average of 10 us.

by 3-21%. Overall, CoreSync is not only on the Pareto frontier
when load is below capacity, it also provides the best balance
between utilization and latency.

Performance when load is near and beyond capacity. When
the server is overloaded, all policies achieve comparable tail
latency because overload control behavior is similar across all
policies. However, they differ primarily in achieved throughput
(Table I). In particular, the overload controller forces the ad-
mitted load to exhibit sawtooth-like behavior. Existing policies
are sensitive to momentary drops in load. Thus, all policies,
except Caladan, exhibit throughput degradation. Caladan is
more conservative in deallocation, taking into account the
state of other system bottlenecks, leading to fewer allocation
changes and the highest throughput under overload among
all policies. CoreSync, in contrast, avoids deallocating cores
during persistent overload. It uses the number of client sessions
with zero credits as a stable signal to suppress deallocation
and maintain throughput. CoreSync outperforms Shenango,
Utilization Range, and Delay Range policies by up to 5.8%,
3%, and 4%, respectively. Moreover, Caladan outperforms
CoreSync by only 2.9% in its best case.

Impact of different service time distributions. Figure 4
shows the performance, below capacity, for a workload whose
service time follows a bimodal distribution with 10us aver-
age. Bimodal workloads are more bursty in terms of their
CPU requirements, creating challenges for existing policies.
In particular, we find that CoreSync remains on the Pareto
frontier, with the gap between it and other policies growing, in
terms of both latency and utilization. For example, at medium
loads, CoreSync reduces latency compared to reactive policies
like Shenango and Caladan by 50% and 10%, respectively.
Compared to proactive policies, CoreSync improves utilization
by 1.3x and 1.2x compared to Utilization range and Delay
range, respectively. When load exceeds capacity, CoreSync
outperforms or exactly matches all existing policies in terms
of throughput. The results are shown in Table I. CoreSync
improves performance by up to 6% compared to Shenango,
2.6% compared to Utilization Range, and 3.8% compared to
Delay Range. The performance of Caladan and CoreSync is
very similar (within less than half a percent).

Impact of different average service times. We now con-
sider CoreSync’s performance for shorter requests. For short
requests, we find that no policy has a clear advantage when
load is beyond capacity. However, CoreSync maintains its
advantage when load is below capacity. Figure 5 shows
performance below capacity for workloads with exponential
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service time distributions with an average of 1 us.

and bimodal service time distributions, both averaging 1us.
The trends observed for the 10us workload largely hold
here as well. Reactive policies continue to aggressively adjust
core allocations in response to load changes, achieving better
utilization but worse tail latency. Proactive policies, influenced
by frequent bursts, tend to allocate more cores as average
metrics approach the upper end of the configured range.
However, the excess allocation compared to reactive schemes
is less pronounced than in the 10us case.

CoreSync uses the credit state from the overload controller
to guide core deallocations, keeping operation near the bottom-
left of the latency—utilization curve across loads. At medium
load, for the exponential case, CoreSync achieves up to 1.6x
and 1.3x lower latency than Shenango and Caladan, while
providing 10% and 5% better utilization than the Utilization
and Delay range policies, respectively. For the bimodal case,
CoreSync delivers up to 1.7x and 1.2x lower latency than
Shenango and Caladan, and 10% and 7% better utilization
than the Utilization and Delay range policies, respectively.

C. Overall Performance for Real-World Workloads

We evaluate CoreSync’s effectiveness on real-world low-
latency workloads using Memcached with the USR workload
from [25], where 99.8% of requests are GET and 0.2% are
SET. Each GET has a latency under 1us. Memcached’s request
service time is almost constantly distributed. Memcached is
therefore expected to behave a lot like the 1us synthetic
workload we saw in Figure 5. To assess CPU efficiency, we
co-locate Memcached with a background Best-Effort (BE)
application— a CPU-bound task performing square root cal-
culations. The BE task opportunistically uses idle CPU cycles.
Without any Memcached load, it utilizes all 16 logical cores on
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Fig. 6: Latency v/s Antagonist Throughput, below capacity,
for Memcached.

Policy Normalized Throughput
100% Load | 130% Load | 150% Load
CoreSync 1 1 1
Shenango 1.019 0.997 0.999
Caladan 1.002 1.001 1.004
Utilization Range 1.006 0.986 0.995
Delay Range 0.986 0.965 0.984

TABLE II: Throughput results, near and beyond capacity, for
Memcached

the server. An ideal core allocation policy should maintain low
Memcached latency while maximizing BE throughput (i.e.,
square roots per second).

When load is below capacity, latency and CPU utilization
results for Memcached closely mirror those observed in the
1us synthetic case. Note that we use the throughput of the
BE application as a proxy for CPU utilization. Results are
shown in Figure 6. An important observation is that improved
CPU utilization of the latency-critical application, does not
necessarily translate to improved throughput for the BE appli-
cation. In particular, Caladan exhibits low BE throughput when
Memcached has low and medium load. This is probably due
to its Hyperthread and Memory Bandwidth Controllers, which
can block cores from being allocated to a BE application to
reduce interference. CoreSync remains on the Pareto frontier,
achieving up to 1.6x lower latency and 1.2x higher BE
throughput compared to other policies. Notably, at high loads,
CoreSync favors latency over BE throughput - driven by the
configured value of parameter R. Increasing R can improve
efficiency (BE throughput) at the cost of latency, as we will
see in Section IV-D. Under overload, CoreSync improves
throughput by up to 3% over Shenango, Utilization Range,
and Delay Range policies, while remaining within 0.4% of
Caladan’s throughput (Table II).

D. Sensitivity to Different Parameters and Settings

Effect of varying the proportionality parameter, R. We
vary the value of R from 10 to 100, and observe how the
overall performance as we change load on the server. We
use a workload having exponentially distributed service times
with a mean of 10us. Figure 7 shows that for lower values
of R, CoreSync favors optimizing latency over utilization.
This is because during core deallocation, credits will be
reduced more frequently, for a lower value of R, to maintain
partial proportionality. Reducing the number of issued credits
reduces the maximum possible burst size, improving latency.



1000

(kRPS)

Throughput
wv
o
o

o

Latency
(ps)

-
w o
o o

o
o
o

(%)

o
N
w

CPU Utilization 999,

o
o
S

50% 80% 120%

Load Level (%)
Fig. 7: Throughput, Latency, and Utilization of CoreSync, for
varying values of the parameter R.

20%

Moreover, a core will busy poll for longer as it awaits more
credits to be revoked, harming utilization. Increasing the value
of R has the opposite effect, allowing it to behave more strictly
according to rules of CoreSync’s basic core allocation logic
(i.e., Shenango in our design).

Scalability to a large number of clients. We vary the number
of client sessions from 100 to 10000 to evaluate how well
CoreSync’s performance scales with a large number of clients.
As discussed in Section III, the parameter R should also
scale with the number of clients in the system, hence, we
set R = 50, R = 500, and R = 5000 for 100, 1000,
10000 sessions experiments, respectively. Figure 8 shows per-
formance when load is below capacity, demonstrating that the
benefits of CoreSync are sustained regardless of the number of
sessions. We compare CoreSync with Shenango - a reactive
policy and Utilization range - a proactive policy. Similar to
our earlier findings, CoreSync provides 1.5x lower latency
than Shenango and 40% better CPU utilization than Utilization
range, across all connection counts. Throughput improves at
high connection counts above capacity because there’s a higher
chance of at least one drained session, which delays core
deallocation.

V. DISCUSSION

Basic overload control and core scheduling operations
in CoreSync. We choose to base the basic overload control
and core scheduling operations of CoreSync on Breakwater
and Shenango, respectively. While we demonstrate that this
design choice of CoreSync outperforms existing techniques,
the advantages of CoreSync stem from the proportionality
between admitted load and the number of cores allocated to
serve it. Thus, we believe that other systems should be able
to employ different basic overload control and core allocation
strategies, depending on the constraints of their deployments.
Practical relevance of CoreSync. Overload controllers are
developed for scenarios where load is expected to exceed ca-
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(mean 10 ps) across connection counts. CoreSync uses R =
50, 500, and 5000 for 100, 1k, and 10k clients, respectively.

pacity. Fast core schedulers are developed for scenarios where
load is expected to change rapidly below the capacity of the
server. At first glance, it might seem that they are built for very
different settings, and that might have been historically true.
However, recent trends push the operations of servers towards
true elasticity, motivated by FaaS applications [5], [26]. Such
advancements necessarily enable scenarios where load quickly
shifts from below the capacity of a server to beyond it. Such
scenarios would require CoreSync-like systems.

Limitations. CoreSync requires a server-driven admission
controller. It is unclear if joint core scheduling and admission
control can be performed accurately when client-based admis-
sion controllers are used (e.g., [12], [13], [27]). Moreover,
CoreSync assumes that operating systems can access and
modify the state of the RPC-layer, limiting its practicality to
scenarios where an operator controls the whole stack. How-
ever, CoreSync might be offered as a service akin to autoscal-
ing. Finally, CoreSync was designed for run-to-completion
tasks. Supporting more sophisticated schedulers would require
further investigation beyond the scope of this paper.

VI. CONCLUSION

This paper presents CoreSync, a policy for optimizing the
combined decision-making of dynamic core allocation and
overload control. CoreSync is a first step in tackling the
downsides of the growing complexity of resource management
in large-scale servers. It demonstrates the value of having an
integrated view of the behavior of modern servers. Such a
view led to the design of a simple-yet-effective algorithm that
maintains partial proportionality between admitted load and
the amount of resources allocated to serve it. We show that
CoreSync lies on the Pareto frontier of utilization, latency,
and throughput, dominating some state-of-the-art solutions. In
particular, CoreSync can improve throughput by up to 6%
at high loads while reducing latency by 58% and improving
utilization by 40% at low loads.
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