
MobiCom 2009 Poster: DNIS - A Middleware for Dynamic
Multiple Network Interfaces Scheduling

Ahmed Saeed Karim Habak Mahmoud Fouad Moustafa Youssef
{ahmed.saeed, karim.habak, mahmoud.fouad, mayoussef}@nileu.edu.eg

Wireless Intelligent Networks Center, Nile University, Smart Village, Egypt
Many of today’s mobile devices are equipped with multiple network interfacesthat can be
used to connect to the Internet, including Ethernet, WiFi, 3G, and Bluetooth.However, cur-
rent operating systems, such as Windows and Linux, typically choose only one of the avail-
able network interfaces and assign all the traffic to it, even if more than one isconnected to
the Internet. This results in an obvious under utilization of the available bandwidth. Dif-
ferent bandwidth aggregation techniques suggested altering different layers of the TCP/IP
stack which requires applying modifications on the client’s stack and/or the cloud, which
cannot be widely deployed easily. In this work, we present DNIS, a networking middleware
that achieves bandwidth aggregation using per-TCP connection scheduling on different in-
terfaces in a way that is transparent to both the user and the applications. DNIS is com-
posed of two main components: (1) a parameter estimator that estimates theapplications’
characteristics and requirements as well as interfaces’ properties; (2)a scheduler that uses
the estimated parameters to assign different TCP connections to network interfaces. We
present an implementation for DNIS for the Windows OS and show its performance for
different scheduling algorithms. Our initial results show significant enhancement of the
overall device’s throughput, up to 54%, increasing resource utilization and enhancing the
user’s experience.

I. Introduction

Making efficient use of the available resources is an
important goal for any operating system. This be-
comes more important for the resource-constrained
mobile devices. In today’s Internet driven world, net-
work bandwidth has become one of the most impor-
tant resources. Many of today’s mobile devices con-
tain multiple network interfaces, such as Ethernet,
WiFi, 3G, and Bluetooth. Combining the bandwidth
from all available independent interfaces increases the
network resource utilization and enhances the user’s
experience. Unfortunately, the dominant operating
systems today, such as Windows and Linux, typically
allow the user to use only one of the available inter-
faces,even if multiple of them are connected to the
Internet.

Different approaches has been proposed in litera-
ture. Transport layer and network layer approaches
require changes to legacy servers [1], require a proxy
[2, 3], or are not available to the end user’s de-
vice directly [4]. Link layer approaches, e.g. IEEE
802.1AX-2008, require homogeneous links, which is
not available in mobile environments. Changes of
sockets implementation was suggested by [5]. How-
ever, this approach requires changes in both the pack-
ets’ headers and legacy servers.

In this work, we present DNIS: a middleware for
Dynamic multiple Network Interfaces Scheduling.
DNIS provides a bandwidth aggregation solution that
is based on a per TCP-connection scheduling. DNIS
tracks applications’ and interfaces’ behavior. This al-
lows the device to be aware of its available network in-
terfaces, their bandwidth, stability, and cost. In addi-
tion, it estimates the applications’ needs and automat-
ically allocates the traffic carefully to make the best
out of the available network resources. This is per-
formed transparently from the user and applications.
We also present an implementation of DNIS over the
Windows Vista operating system using the Layered
Service Provider (LSP) framework [6].

II. Architecture

Our DNIS middleware has two subtasks:(1)Estima-
tion: Where we estimate the applications’ needs and
characteristics, as well as the properties of the network
interfaces. (2)Scheduling: Where we assign differ-
ent connections to different network interfaces based
on the estimated parameters.

In order to perform these two subtasks, DNIS is
composed of two components: (1) A middleware ser-
vice and (2) a monitoring application.

Winsock 2 API

WS2_32.DLL

Service Provider Interface

(SPI) chain

DNIS

Network Application

(e.g. Firefox)

Base Protocol

(e.g. TCP/IP)

Figure 1: Layered Service Provider Architecture used
in Implementing DNIS for the Windows Vista OS.

II.A. Middleware Service

The middleware service is responsible for estimat-
ing the different parameters and scheduling the dif-
ferent connections to different network interfaces. It
does this by intercepting connection requests from
networking applications and rerouting them to the best
interface. Similarly, for connection-less protocols,
such as UDP, DNIS intercepts send requests and di-
rects them to the best interface.

II.B. Monitoring Application

The monitoring application allows the user to monitor
the middleware service as well as specify the different
DNIS settings.

III. Algorithms

In this section, we discuss the different algorithms
used for estimation and scheduling in DNIS.

III.A. Parameters Estimation

To be able to make the right decision, DNIS needs to
estimate the properties of the different available net-
work interfaces as well as the needs and characteris-
tics of the different applications running on the sys-
tem. For the network interfaces, DNIS keeps track of
the current utilization of the interface, error rate, max-
imum bandwidth, and buffer size. Other metrics, e.g.
[7], are also being investigated.

For the applications, DNIS keeps track of the aver-
age number of bytes sent and received per unit time,
maximum number of bytes sent and received per unit
time, and the application type (realtime (e.g. Skype),
browser (e.g. Firefox), unclassified). The application

type can be estimated based on the executable name of
the process, the ports it uses, and/or its traffic pattern.
In addition, the DNIS monitoring application can be
used to set this type manually by the user.

III.B. Maximum Throughput Schedul-
ing

For a new connection, the maximum throughput
scheduler assigns it to the network interface that will
maximize the system throughput. This is equivalent
to assigning the new connection to the interface that
minimizes the time needed to finish the current sys-
tem load in addition to the load introduced by this
new connection. This algorithm depends on two vari-
ables that are computed by the estimation module: (1)
Expected time for each interface to finish its current
load = Sum of the average load introduced by appli-
cations using this interface / average bandwidth calcu-
lated for this interface and (2) Expected traffic that the
new connection will produce, based on the history of
the application creating this connection. We compare
the performance of the maximum throughput sched-
uler to other algorithms in the Section V.

IV. Implementation

We implemented our DNIS middleware on the Win-
dows Vista OS as a Layered Service Provider (LSP)
[6] which is installed in the TCP/IP protocol chain
in the Windows operating system (Figure 1). DNIS
uses the same concepts used by firewalls and network
proxies to control the network flow. One of its compo-
nents is a service that is used to intercept socket-based
connection-requests and assign proper network inter-
faces to them. DNIS keeps track of the past behavior
of different applications and different interfaces and
also takes into consideration the user’s preferences to
make the decision of assigning connections to certain
interfaces. DNIS is based on a Windows’ networking
API feature called Service Provider Interface (SPI).
SPI defines two different types of service providers:
(1) A Transport Service Provider and (2) A Name
Space Service Provider. DNIS is implemented as a
Transport Service Provider. Data transfer protocols
are implemented through a chain that has different
layers. The base layer, e.g. TCP, is responsible for
how the protocol works. Other layers, like our service
are responsible for handling high level traffic control
(Figure 1).

Using DNIS we can monitor and keep track of the
behavior of different applications and the capacity and
stability of different network interfaces.

V. Performance Evaluation

V.A. Setup

To evaluate DNIS, we used two laptops: (1) A Fujitsu
Siemens laptop (AMILO Pro V3405) running Win-
dows XP as a server.(2) An HP laptop (X16t) run-
ning DNIS on Windows Vista with a custom client
for generating traffic. Both machines were connected
through a wireless router (SMC7904WBRA2) such
that the server connected to the router with a 100Mbps
Ethernet link and the client configured to be con-
nected to the router with an 11Mbps wireless link
and a 10Mbps Ethernet link to simulate client side
bottlenecks, which is usually the case. Each exper-
iment was run for 8 minutes and repeated a num-
ber of times to generate the data points. The client
establishes new connections with the server accord-
ing to two Poisson processes representing two classes
of applications. The first class represents long-lived
connections with a file download size of 150 MByte
(rate=λlong), while the second class represents short-
lived connections with a file download size of 250
KByte (rate=λshort).

V.B. Results

Figure 2 compares five different schedulers: using
only Wi-Fi, using only Ethernet, a round-robin sched-
uler, a random interface scheduler, and the maximum
throughput scheduler. The figure shows that utiliz-
ing more than one interface always achieves higher
goodput than using one interface. The maximum
throughput scheduler, which takes into account the
applications’ behavior and interfaces’ characteristics,
achieves higher goodput than other schedulers, which
is the sum of the goodput of the two available inter-
faces. This highlights that DNIS has minimum ex-
tra overhead on the protocol stack. When the system
load is high, the gap between the different multiple-
interface schedulers decreases as the system becomes
saturated. The advantage of the maximum throughput
scheduler is evident with low to medium loads. The
figure shows that the maximum throughput scheduler
can perform up to 54% better than using only a single
interface.

VI. Ongoing Work

We are currently expanding DNIS in different direc-
tions, including designing other schedulers that takes
other metrics, such as cost, into account, handling
UDP traffic, and applications’ characteristics estima-
tion granularity.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 5 10

G
oo

dp
ut

 (
M

bp
s)

λshort

λlong = 5

Max. Throughput
Random

Round robin
Only Ethernet

Only Wifi

Figure 2: Effect of using the different schedulers on
the performance of the system.

References

[1] L. Magalhaes and R. Kravets,Transport level
mechanisms for bandwidth aggregation on mobile
hosts, in: Proc. IEEE ICNP01 (Riverside, Nov
2001).

[2] Kameswari Chebrolu, Bhaskaran Raman, and
Ramesh Rao,A Network Layer Approach to En-
able TCP over Multiple Interfaces, Wireless Net-
works Volume 11, Issue 5; Pages 637 - 650
(September 2005).

[3] H. Hsieh and R. Sivakumar,A transport layer
approach for achieving aggregate bandwidths on
multi-homed mobile hosts, in: Proc. ACM MO-
BICOM02 (Atlanta, Sep. 2002).

[4] P. Rodriguez, R. Chakravorty, J. Chesterfield, I.
Pratt and S. Banerjee,MAR: a commuter router
infrastructure for the mobile Internet, 2nd inter-
national conference on Mobile systems, applica-
tions, and services, Pages: 217 - 230 (2004)

[5] H. Sakakibara, M. Saito and H. Tokuda,Design
and implementation of a socket-level bandwidth
aggregation mechanism for wireless networks, in
Proc. of the 2nd annual international workshop on
Wireless internet, WICON’06.

[6] Wei Hua, Jim Ohlund, and Barry Butterklee,Un-
raveling the Mysteries of Writing a Winsock 2
Layered Service Provider, Microsoft Systems
Journal, No. 61; Pages 96-113(1999).

[7] Mark Allman, Wesley Eddy, and Shawn Oster-
mann,Estimating loss rates with TCP, SIGMET-
RICS Perform. Eval. Rev., Vol. 31, No. 3; Pages
12-24(2003).

