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Abstract—WLAN Device-free passive (DfP) indoor localization
is an emerging technology enabling the localization of entities that
do not carry any devices nor participate actively in the localiza-
tion process using the already installed wireless infrastructure.
Current state-of-the-art DfP localization systems require a large
overhead to construct an RF profile for the environment, that is
then used as a reference for either motion detection or tracking.
These profiles are also not robust to changes in the environment,
requiring frequent manual maintenance or reconstruction.

In this paper, we present the design, implementation and
evaluation of Ichnaea, an accurate, robust, and low-overhead
DfP localization system. Ichnaea uses a lightweight, typically
two minutes, training period to learn the silence profile of
the environment. It then applies statistical anomaly detection
techniques and particle filtering, while adapting to changes in
the environment, to provide its localization capabilities using
standard WiFi hardware. Evaluation of Ichnaea in three typical
testbeds with a side-by-side comparison to the state-of-the-art
WLAN DfP systems shows that it can achieve can achieve a worst
case median distance error of 2.5m while requiring significantly
lower deployment overhead and being robust to environment
changes.

Index Terms—Anomaly detection, device-free passive localiza-
tion, particle filters, robust device-free localization.

I. INTRODUCTION

THE increasing need for context-awareness in modern
consumer applications and the rapid advancements in

communication networks have motivated significant research
effort in the area of location-based services. This effort re-
sulted in the development of many location determination sys-
tems, including the GPS system [7], ultrasonic-based systems
[24], infrared-based (IR) systems [33], and radio frequency-
based (RF) systems [37]. These systems require the tracked
entity to carry a device that participates in the localization
process. Thus, we refer to them as device-based systems.

Recently, the idea of RF device-free localization, where
an entity can be tracked without any devices attached to
it nor participating actively in the localization process, has
been introduced [13], [19], [28], [29], [34], [36]. Based on
RF signal processing, these systems have an advantage over
traditional device-free tracking systems such as cameras [14]
and IR-based systems as these later systems are limited to
line-of-sight vision and thus the cost of covering an area
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might be prohibitive. In addition, regular cameras fail to work
in the dark or in the presence of smoke. Applications of
RF-based device-free localization include intrusion detection,
border protection, patient monitoring, and smart homes.

A special class of RF device-free localization systems is
those based on standard wireless networks. In particular, the
work in [36] introduced a device-free passive (DfP) local-
ization system that works with standard wireless LANs. The
basic idea depends on the fact that the presence and motion of
entities in an RF environment affect the RF signal strength es-
pecially when dealing with the 2.4 GHz band which is used in
different IEEE standards such as 802.11b and 802.11g (WiFi).
This class of device-free localization systems is particularly
challenging as it requires relying on a small number of sensory
nodes (i.e. WiFi access points and receivers). Moreover, the
deployment of such systems is usually within indoor areas
rich in multipath, which makes tracking the effect of human
presence on RSS values challenging.

A typical DfP system consists of signal transmitters, such
as access points (APs), signal receivers or monitoring points
(MPs), such as standard laptops, and an application server
which collects and processes information about the received
signals from each MP. The application server contains the
main system modules responsible for performing its different
localization functions. Several WLAN DfP algorithms were
proposed for human motion detection [19], [36] and tracking
[13], [28], [29], [35], [36] of entities in indoor environments.
These DfP systems provide a software only solution on top
of the already installed wireless networks and hence provide
a value-added service to these networks without adding any
special hardware.

Current WLAN DfP localization techniques [19], [28], [29],
[35], [36] provide good performance under strong operation
assumptions, which limit their application domain. For exam-
ple, the techniques proposed in [19], [28], [29], [35] require
the construction of human presence profiles in the form of
either human motion profiles [19] or passive radio maps [28],
[29], [35]. These profiles lead to a high calibration overhead
for large-scale environment deployments. In addition, access
to the entire area of interest is required and professionals
are needed to perform this calibration which might require
access to restricted or private areas. Moreover, these systems
are not robust to changes in the environment which affects
their accuracy as changes to the environment, e.g. humidity
and temperature changes, occur. This requires either frequent
manual maintenance or even worse, reconstruction of the high-
overhead human presence profiles.
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In this paper, we present Ichnaea: a novel WLAN DfP
localization system with the goals of providing low-overhead,
accurate, and robust motion detection and tracking capabilities.
Ichnaea performs its functionalities in three steps: First, it
constructs an initial non-parametric silence profile for the
signal strength readings received at the MPs. This step is
performed to capture the behavior of the received signal
strength at the different MPs when no humans are present in
the area of interest during a short training period (typically two
minutes for the whole area). Second, Ichnaea uses statistical
anomaly detection techniques to detect streams exhibiting
anomalous behavior due to the effect human presence has on
the streams. Concurrently, Ichnaea also employs techniques
for continuously updating its silence profile to adapt to the
environment changes ensuring the system robustness. Third,
the anomaly scores assigned to each wireless stream are then
used by a particle filtering algorithm to track the exact motion
path of the moving entity. Currently, we focus on enabling
tracking of a single entity leaving the multi-entity tracking
problem to a future paper.

We evaluate Ichnaea in three large-scale typical testbeds
rich in multi-path and compare its performance to the state-
of-the-art WLAN DfP detection and tracking techniques [19],
[28], [35], [36]. Our results show that Ichnaea achieves its
goals of high accuracy, low-overhead and robustness.

In summary, the contributions of this paper are three-fold:
• We present the design of Icnhaea, a low-overhead robust

WLAN DfP localization system that employs statistical
anomaly detection and particle filtering to detect and track
human motion using conventional WLAN deployments.

• We present techniques that allow Icnhaea to adapt to
environment changes and reduce the effect of the wireless
channel noise.

• We evaluate the system in three large-scale realistic
testbeds and compare it to the state-of-the-art DfP de-
tection and tracking techniques.

The rest of the paper is organized as follows: Section II
gives the details of the system while Section III shows its
performance evaluation. In Section IV we compare Ichnaea
to the state-of-the-art WLAN DfP detection and tracking tech-
niques. Section V discusses related work. We finally conclude
the paper in Section VI.

II. THE ICHNAEA SYSTEM

In this section, we give the details of the Ichnaea system.
We start by an overview of the system architecture followed
by the details of the system modules.

A. System Overview

Figure 1 shows the system architecture. The modules of
the proposed system are implemented in the application server
that collects samples from the monitoring points and processes
them. The system works in two phases:

1) A short offline phase, during which the system studies
the signal strength values when no human is present
inside the area of interest to construct what we call
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Fig. 1. Ichnaea system architecture.

a “normal or silence profile” for each stream. The
profiles of all streams are constructed concurrently in
that short phase.

2) A monitoring phase, in which the system collects read-
ings from the monitoring points and decides whether
there is human activity (anomalous behavior) or not
based on the information gathered in the offline phase.
Based on the detected anomalous streams, a particle
filtering algorithm is used to track the motion through
the area of interest. Moreover, the stored normal profile
are also updated to adapt to environment changes.

The Normal Signal Behavior Capturing Module captures
the behavior of the signal streams when there is no human
motion present in the area of interest and stores initial silence
profiles based on a short training period (Section II-C).

The Anomaly Detector Module examines each stream read-
ings in the monitoring phase and decides whether they exhibit
anomalous behavior or not. This operation is applied to each
stream independently. It also assigns an anomaly score to each
stream to express the intensity of the anomalous behavior
(Section II-D1).

The Detection Decision Smoother Module fuses the
anomaly scores of the different streams to reduce the noise
and enhance the overall detection accuracy (Section II-D2).

The Signal Behavior Updater Module continuously updates
the normal profiles constructed in the offline phase in order to
adapt to changes in the environment (Section II-D3).

The Motion Tracking Module works after a motion detection
alarm has been raised. It uses the anomaly score assigned to
each stream to give weights to different particles representing
the possible tracked entity location. Combined with a human
motion model, these weights are used by a particle filter to
infer the current location of the moving entity (Section II-E).

For the balance of this section, we start by giving the
mathematical notations followed by the details of the different
modules.

B. Mathematical Notations
Table I summarizes the symbols used. Let k be the number

of streams, which is equal to the number of APs times
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Symbol Description
k Number of streams
St Received signal strength vector at time instant t
sj,t Received signal strength for stream j at time instant t
Wj,t Sliding window of received signal strength values for

stream j at time instant t
l Size of received signal strength sliding window (|Wj,t|)
g(.) Feature mapping function
xj,t Feature value for sliding window Wj,t

aj,t Anomaly score for sliding window Wj,i

at Global anomaly score at time instance t
Bt Smoothed value of the global anomaly score at time instance t
α Significance
lupdate Number of consecutive xj,t forming an update window
rt Coordinates of the tracked moving entity at time t
ri,t Particle i representing a possible value for rt
zij,t Weight assigned to particle i based on the anomaly

score of stream j at time t
zi,t Overall particle i weight at time t
dj Length of stream j (distance between the AP and MP

of the stream)
dAPj ,i Distance between particle i and the AP of stream j
dMPj ,i Distance between particle i and the MP of stream j

TABLE I
LIST OF SYMBOLS USED.

the number of MPs. Let St = {sj,t|j = 1, ..., k} denote
the received signal strength (RSS) readings vector at time t
composed of k readings, one for each stream j. The system
studies the behavior of a sliding window Wj,t of size l that
ends at time t, i.e. Wj,t = [sj,t−l+1, sj,t−l+2, ..., sj,t].

In order to study the behavior of the sliding windows, each
sliding window Wj,t is mapped to a single feature or value
xj,t through a function g(.). For example, if the mean is
the selected feature, then g(Wj,t) = 1

l

∑l
i=1 sj,t−l+i. Our

experiments show that measures of dispersion or variation,
such as the variance, are superior signal features in terms of
robustness to profile changes and sensitivity to human activity
[12]. Thus, for the rest of the paper, we use the sample variance
as the selected feature. It should be noted that using the
full sliding window vectors for anomaly detection, without
mapping it to a single feature, leads to increased complexity,
which reduces the responsiveness of the system.

C. Normal Signal Behavior Capturing Module

The purpose of the Normal Signal Behavior Capturing Mod-
ule is to construct a silence profile for each stream, capturing
the received signal strength characteristics when there is no
human in the area of interest. This is used later by other
modules to detect anomalies in signal strength readings caused
by human presence. This module runs in the offline phase. It
extracts the feature values from the sliding windows over the
collected data and estimates its distribution. We experimented
with a number of density estimation techniques and found
that using non-parametric kernel density estimation provides
good results with reasonable complexity [13]. This operation
is performed for each stream independently (Figure 2).

Formally, for a stream j, given a set of n sliding windows,
each of length l samples, i.e. there are n + l − 1 readings
collected, each window Wj,i is mapped to a value xj,i, where
xj,i = g(Wj,i). Assume fj is the density function representing
the distribution of the observed xj,i’s, then given a random

Fig. 2. Illustration of the normal profile construction.

sample xj,1, xj,2, ..., xj,n, the estimated density function f̂j is
given by [30]:

f̂j(x) =
1

nhj

n∑
i=1

V

(
x− xj,i
hj

)
(1)

where hj is the bandwidth and V is the kernel function. The
choice of the kernel function is not significant for the results of
the approximation [27]. Hence, we choose the Epanechnikov
kernel as it is bounded and efficient to integrate:

V (q) =

{
3
4 (1− q

2), if |q| ≤ 1

0, otherwise
(2)

Also, we used Scott’s rule to estimate the optimal bandwidth
[27]:

h∗j = 2.345σ̂jn
−0.2 (3)

where σ̂j is an estimate for the standard deviation for the xj,i’s.
After estimating the density function for the variance ex-

tracted from the sliding windows, a critical upper bound for
the variance is calculated so that if the variance observed in
the monitoring state exceeds this bound, the observed values
are considered anomalous. In particular, given a significance
parameter α and assuming F̂j is the CDF of distribution shown
in Equation 1, then the bound is equal to F̂j

−1
(1− α).

D. Motion Detection Module

The Motion Detection Module runs during the monitoring
phase to detect human presence in the area of interest. It has
three functionalities: (1) to detect signal strength anomalies,
i.e. human presence, based on the signal profiles constructed
during the offline phase (2) to take a collective decision based
on the anomalies detected for individual streams to decide
whether a human was detected or not, and (3) to update the
stored signal profiles to adapt to changes in the environment.

This decision is then used to trigger the Motion Tracking
Module. For the rest of this section, we present the details of
the three functionalities of this module.

1) Anomaly Detector: This procedure is responsible for
detecting anomalous behavior exhibited by any of the streams
based on the collected silence profiles. In particular, for a
window of samples Wj,t for stream j at a given time instant
t, the module calculates the corresponding feature value xj,t,
i.e. the sample variance. A stream j is considered anomalous
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if xj,t is above a critical bound uj . Given a significance
parameter α and assuming F̂j is the CDF of distribution shown
in Equation 1, the upper bound uj is equal to the 100(1−α)th
percentile of the CDF function, such that

uj = F̂j
−1

(1− α) (4)

The module calculates an anomaly score aj,t for each stream
j to keep track of the significance of any anomalous activity
as:

aj,t =
xj,t
uj

,where
aj,t < 1 if no anomaly is detected
aj,t ≥ 1 if anomaly is detected

(5)
where xj,t is the sample variance of the window and uj is the
critical value. This initial procedure requires two parameters:
the window size l and the significance α. Analysis of the
effect of both parameters on performance is presented in
Section III-C. We finally note that processing each stream
individually helps with tracking and visualization and reduces
the complexity of updating the silence profile distributions.

2) Detection Decision Smoother: Typical wireless environ-
ments are noisy. This fact can cause many false alarms if we
declare a detection event based on the result of any single
stream alone. This could also degrade the performance of
motion tracking significantly by starting the tracking procedure
unnecessarily. To avoid this degradation, this sub-module
studies the behavior of a global state of all streams.

The global anomaly score at is calculated by summing the
individual anomaly scores for each stream at =

∑k
j=1 aj,t.

This mapping of the vector of anomaly scores into a single
value also facilitates the motion tracking functionality. If a
noticeable change in at occurs, based on a threshold, while
at least one stream is anomalous, this implies the start of an
anomalous behavior. This procedure makes use of the history
of the activity state inside the environment through the usage
of exponential smoothing to monitor the at in order to avoid
the noisy samples, hence reducing the false alarm rate. The
smoothed sum Bt is calculated as follows

Bt = (1− β)Bt−1 + βat, B0 = a0 (6)

where β is the smoothing coefficient. Smoothing the values
also implicitly makes use of the locality of human motion,
meaning that the human will continue to affect the same
stream and/or other streams near it, causing the smoothed sum
of anomaly scores to have higher values during the motion
period.

3) Signal Behavior Updater: Due to the dynamic changes
in the environment, e.g. changes in temperature and humidity
levels, the current state can deviate significantly from the
stored normal profiles, degrading performance. Therefore, the
systems needs to update the stored profiles during the online
phase. The technique we employ for handling the update pro-
cess continuously updates the estimated density in Equation 1
by adding xj,t’s that do not have high anomaly scores in
average to it. In particular, during the monitoring phase, the
system groups the consecutive xj,t’s in disjoint groups of size
lupdate. The group that has an average anomaly score of less
than one is added to the normal profile. The parameter lupdate

can be tuned to provide the desired performance. We quantify
the effect of the lupdate parameter in Section III-C.

Adding new data to the normal profiles implies the need
to give more weight to the recent data. Thus, instead of
giving equal weights to the samples used for the probability
calculation in Equation 1, more weight is given to recent data.
Therefore, Equation 1 is modified to:

f̂j(x) =
1

hj

n̂∑
i=1

wiV

(
x− xj,i
hj

)
(7)

where
n̂∑

i=1

wi = 1. We choose linear weights such that

wi = i
n̂(n̂+1)/2 where n̂ is the number of sliding windows

collected during the silence period and the newly added sliding
windows in the online phase which were found normal (i.e. not
anomalous). We found that exponential weights do not provide
good performance due to the high discrimination introduced
between older and newer data.

E. Motion Tracking Module

After a global detection alarm is triggered by the Motion
Detection Module, the Motion Tracking Module is activated.
This module is responsible for inferring the location of the
moving entity. We employ a Sequential Importance Sampling
with Resampling (SISR) [2], [8] particle filtering algorithm to
approximate the posterior probability representing the location
of the moving entity based on the anomaly scores assigned to
each stream, the location of these streams, and motion model
capturing the mean and variance of the human gait speed.

Formally, we want to estimate the location of a single
moving entity, rt, using the RSS vector St by calculating
posterior

p(rt|St) ∝ p(St|rt)
∫
p(rt|rt−1)p(rt−1|St−1)drt−1 (8)

where the term p(St|rt) is the likelihood of obtaining the RSS
vector St given the human presence at location rt. The term
p(rt|rt−1) represents the tracked entity’s motion model and the
term p(rt−1|St−1) is posterior calculated at time step t− 1.

We use a particle filter to estimate the posterior by represent-
ing it by a set of random weighted N particles {ri,t, zi,t}Ni=1,
where ri,t and zi,t represent the location and weight of particle
i respectively at time instance t. The particle filter updates
the posterior according to the following three steps which are
iteratively applied after obtaining each new RSS vector St:

1) Importance Sampling: First, we perform the pre-
diction step in which the next location of each particle
ri,t is sampled from the p(rt|rt−1) distribution based on
its current location ri,t . This distribution represents the
adopted motion model of the tracked entity. We use a model
that captures walking patterns for humans, where the user
speed, in meter/second, follows a normally distributed variable
N (1.5m/s, 0.0144m2/s2) [3]. We also use the change of the
stream that has the highest anomaly score to determine the
direction of motion. In particular, for each particle ri,t, we
first determine the direction of the motion then the distance. To
determine the direction of the motion, if the most anomalous
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stream changes from one time step to the next, then the
direction of motion is the vector starting from the center of
old stream stream to the center of the new stream. On the
other hand, if the most anomalous stream does not change
remains between time steps, then the direction is sampled from
a uniform distribution. Finally, a random sample is drawn from
the motion model distribution to determine the distance.

The update step is then performed to assign importance
weights to each particle based on the distribution p(St|ri,t)
which is the likelihood of obtaining the RSS vector St given
the human presence at location ri,t. The importance weight
is calculated based on the anomaly score of the different
streams and the distance between the particle and each stream.
Previous results [6], [34] showed that the maximum change
in RSS occurs when the human cuts the line-of-sight (LOS)
between the AP and MP and the effect decreases as we move
away from this LOS. Therefore, we assign the weight of each
particle relative to a certain stream based on an elliptical
weighting model [34]. However, instead of using the model
to determine whether the moving entity is crossing the LOS
or not, we use the elliptical weighting model to determine the
distance between each particle and the LOS of the stream. In
particular, for stream j, given its anomaly score aj,t at time
instant t, the weight (zij,t) assigned to particle i based on this
stream is equal to:

zij,t = aj,t
dj

dAPj ,i + dMPj ,i
(9)

where dj is the length of stream j (distance between the AP
and MP of this stream), dAPj ,i is the distance between the
particle and the AP, and dMPj ,i is the distance between the
particle and the MP. This is intuitive as when the anomaly
score of the stream increases or the distance between the
particle and the stream decreases, the particle weight increases.

To fuse the particle weights from the different streams, we
experimented with different fusion functions that took into
account either a representation of the weights from all streams
or the most anomalous n streams. We found that the maximum
function gives the best results. The intuition behind using the
maximum function is that it avoids two extreme cases that we
found empirically to occur frequently: 1) fusing weights of
several streams that have only one anomalous stream resulting
in an overall low weight leading to a frequent divergence of
the particles and 2) fusing weights of streams that have noisy
anomaly scores which results in an unrepresentative set of
particles, i.e. high weights are given to particles that should
have been discarded. Therefore, the weight (zi,t) for particle
i at time t based on all streams is calculated as:

zi,t = max
j
zij,t (10)

Finally, the weights assigned to all particles are normalized.
2) Resampling: To prevent the divergence of particles, par-

ticles with small weights are eliminated if their percentage of
the total population exceeds a certain threshold. The effective
sample size is calculated as N̂eff =

1∑N
i=1(zi,t)

2 . If N̂eff < N/2,
the particles are resampled by drawing N particles with
replacement according to the importance weights.

Fig. 3. An example (overlaid on Testbed 1) showing the different particle
weights (darker particles have higher weights) and the estimated entity
location at the centroid.

3) Location Estimation: The final entity location rt is
estimated as the centroid of the particles at time t as rt =∑N

i=1 ri,tzi,t (Figure 3).

III. EXPERIMENTAL EVALUATION

In this section, we study the effect of the different pa-
rameters on the performance of Ichnaea’s motion detection
and tracking capabilities. Due to space constrains, we discuss
in details the effect of different parameters on Ichnaea in
Testbed 1 and summarize Ichnaea’s performance in testbeds 2
and 3 in Section III-E. We leave the comparison with the state-
of-the-art systems to Section IV.

A. Experimental Testbeds and Data Collection

We used three large scale testbeds, deployed in typical
WLAN environments rich in multipath. The first testbed is an
office apartment of approximately 186 m2 (about 2000 ft2).
The second testbed covers a building floor with an area of
352 m2 (about 3790 ft2). The third testbed is the second floor
of a two-floor home building with an area of 140 m2 (about
1500 ft2). All tesbeds were covered with typical furniture. For
Testbed 1, we used four Cisco Aironet 1130AG series access
points and three Dell laptops equipped with D-Link AirPlus
G+ DWL-650+ Wireless NICs as MPs. As for Testbed 2, we
used seven Cisco Aironet 1130AG series access points and
two Dell laptops equipped with D-Link AirPlus G+ DWL-
650+ Wireless NICs as MPs. Finally, for Testbed 3, we used
four Cisco Aironet 1130AG series access points and three
Dell laptops equipped with D-Link AirPlus G+ DWL-650+
Wireless NICs as MPs.

For all testbeds, the access points were operating on dif-
ferent channels. The experiments were conducted in typical
IEEE 802.11b environments. Figures 3 and 4 show the layouts
of the experiments. Because of the signal attenuation due to
obstruction and the distance between some of the access points
and monitoring points only 11 of the theoretically possible 12
streams in Testbed 1 and 8 of the 14 streams in Testbed 2
were sensed.

For the data collection, sets of normal (silence) state read-
ings and motion readings were collected for each testbed. For
Testbed 1, the data collected included three motion sets, each
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Fig. 4. Examples showing sample actual paths in blue and the corresponding
estimated paths in red.

covering the entire area of the testbed. For Testbed 2 and
Testbed 3, the data collected included motion sets in which the
user moved from the entrance to different rooms on the floor.
Samples of the motion sets are shown in blue in figures 4(a)
and 4(b). To record the ground truth for the motion paths, a
grid of locations was created and the moving person logged
the exact time of passing each point of the grid. We used
a sampling rate of one sample per second using the active
scanning technique [37].

B. Evaluation Metrics

We used three metrics to analyze Ichnaea’s detection per-
formance: the false positive (FP) rate, the false negative (FN)
rate and the F-measure. The false positive rate refers to the
probability that the system generates an alarm while there is
no human motion in the area of interest, as opposed to the
true positive (TP) rate which refers to the probability that the
system generates an alarm while there is human motion. The
false negative rate refers to the probability that the system
fails to detect the human motion in any place in the area. We
also use the F-measure which refers to the harmonic mean of
the precision and recall, where the precision is TP

TP+FP and
the recall is TP

TP+FN . The F-measure’s importance is that it
provides a single value to measure the effectiveness of the
detection system [26].

For Ichnaea’s tracking performance, we used the median
distance error as the performance measure of the difference

Basic Detection Silence Profile Decision
Procedure Update Smoothing (Ichnaea Perf.)

FN Rate 0.0672 0.0876 0.0468
FP Rate 0.2158 0.1176 0.0378

F-measure 0.8683 0.8989 (3.52%) 0.9574 (10.26%)
TABLE II

ICHNAEA’S MOTION DETECTION PERFORMANCE AND ENHANCEMENT
PERCENTAGE INTRODUCED BY EACH DETECTION MODULE.
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Fig. 5. Analysis of the Basic Detection Module parameters for Testbed 1.
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between Ichnaea’s estimation and the actual human’s position.

C. Motion Detection Module Performance

In this section, we present the effect of the different sys-
tem parameters on the accuracy of Ichnaea motion detection
capabilities. Table II summarizes the performance for Testbed
1.

1) Basic anomaly detector: This procedure requires the
selection of the sliding window size l and the significance α.
Figure 5 illustrates the effect of these parameters. The figure
shows that choosing a too short window size will make the
system less sensitive to human motion. On the other hand,
choosing a very large window size will introduce a very high
FP rate. For the significance parameter, as α decreases, the
FP rate decreases and the FN rate slightly increases. This
means that increasing the significance will result in less system
sensitivity. Therefore, to balance the different performance
metrics, we choose l = 5 and α = 0.01.

2) Silence profile updater: For this module, the update
window size lupdate is required. Choosing a too small lupdate
will make the system very sensitive to noisy readings, causing
a high FP rate. On the other hand, a very large lupdate will make
the system less sensitive to human motion causing a higher FN
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rate. Figure 6 illustrates the effect of the update window size
on the system performance when l = 5 and α = 0.01. The
figure shows that an update window size between 10 and 20
is sufficient to reduce the high FP rate without causing much
increase to the FN Rate. Thus, we choose lupdate = 15.

Although update window sizes that are more than 10 achieve
better FN and FP rates, hence enhancing the F-measure, we
did not find that to hold for other values of the parameters l
and α. Therefore, we should be conservative about increasing
the update window size.

The results are summarized in Table II. The table shows that
there is about 50% reduction in the FP rate which resulted
in a overall F-measure enhancement of 3.52% with respect
to only detecting anomalous behavior. This enhancement can
be explained by the observation that updating the silence
profiles reduces the effect of the temporal variations between
the environment true normal profiles and the stored normal
profiles by updating them. We verified that by applying the
two-sample Kolmogorov-Smirnov test to the distributions of
the updated profiles and the distributions of the true normal
state. The test accepted the hypothesis that those distributions
came from the same underlying distribution at a significance
of 0.05.

3) Detection decision smoother: While updating the signal
profiles reduces the high FP rate by updating the stored
profiles, the FP rates still need to be addressed. This procedure
fuses the data from all streams by summing up the anomaly
scores of different streams. To reduce the FP rate, the sum is
exponentially smoothed with a smoothing coefficient of 0.04.
A large increment in the smoothed sum, by more than 20% to
25% from the normal level, implies a period of human motion.
Our experiments show that deviations from these parameters
values do not lead to significant degradation in the results.

Table II shows that this module can lead to up to 10.2%
enhancement in the F-measure with respect to the Basic
Detection Module. It is important to note that this module
also reduces the FN rate, as some of the previously undetected
events are now detected because this technique makes use of
the history of the state of the activity as described earlier.

D. Motion Tracking Module Performance

For tracking the entity’s location, this module is affected by
both the parameters used by the Motion Detection Module as
well as its own parameters.

1) Shared parameters with the detection module: Figure 7
shows the effect of the significance, α, and the window size,
l, on the median distance error. The tracking module has
a similar behavior to the detection module behavior when
these parameters change. In particular, as the values of both
parameters increase, the system detection sensitivity increases
and so does the accuracy of the tracking procedure.

This relation could be explained by the observation that
by increasing the Ichnaea detection sensitivity, the anomaly
scores assigned to different streams are increased. This in-
creased sensitivity also allows streams that are slightly affected
by human motion to be declared anomalous. These two
factors help produce more particle weights which enhances
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Fig. 7. Effect of window size l and significance α on the tracking accuracy
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Fig. 8. Effect of number of particles on tracking accuracy in Testbed 1.

the tracking accuracy. It can be observed that the accuracy of
the system settles with α = 0.04 and l = 10. These values
are different from the values used for the detection module.
Hence, we suggest having two sets of operational parameters
configurations: a motion detection parameters set and a motion
tracking parameters set. Ichnaea’s default set is the motion de-
tection set then, once the tracking procedure starts (i.e. human
presence is detected), the system automatically switches to
using the motion tracking set.

2) Particle filter parameters: Figure 8 shows the effect of
increasing the number of particles N used by the particle
filter algorithm. Intuitively, increasing the number of particles
used enhances the accuracy by enhancing the representation
of the estimate of the prior probability of entity’s location,
thus decreasing the median distance error. On the other hand,
increasing the number of particles increases the processing
overhead as well. We note from Figure 8 that increasing
the number of particles over 150 does not incur substantial
enhancement in the tracking accuracy while increasing the
processing overhead significantly. Thus, we choose N = 150.

Finally, we examine the effect of the number of streams
used to cover a testbed on the system accuracy. Figure 9 shows
that as the number of streams increases, the system ability to
detect human motion and in turn trigger the tracking process
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Fig. 9. Effect of number of streams on tracking accuracy in Testbed 1.

increases. It can be observed that only 9 streams achieve the
best attainable accuracy.

E. Summary of System Performance for testbeds 2 and 3
In this section, we summarize the system performance

for Testbed 2 and Testbed 3 (figures 4(a) and 4(b)). The
same system parameters were used for both testbeds as those
used for Testbed 1. The results are summarized in Table III.
Comparing the results for all three testbeds, it can be noted
that while in the first and third testbed the detection accuracy
is better, the tracking accuracy is worse. This is explained by
the observation that while Testbed 2 is the largest testbed, it
is covered with fewer streams making the detection accuracy
worse as human motion in some areas will not affect any
streams.

On the other hand, once the tracking procedure starts, a
consistent human miss-detection1 is translated to the person
leaving the area at its entrance. This technique affects the
tracking accuracy in Testbed 2 less as its entrance is at the
center of the testbed leading to minor shifts in the estimated
path as opposed to Testbed 1 which has its entrance in one
corner leading to sharper shifts in the estimated path when
miss-detections occurs.

In summary, our experiments show that Ichnaea exhibits
similar performance in all three testbeds while requiring no
changes in system parameters. Moreover, only two minutes of
training where used in all testbeds, which highlights Ichnaea
ease of deployment and high accuracy.

IV. COMPARISON WITH OTHER WLAN DFP SYSTEMS

In this section, we compare Ichnaea to the state-of-the-art
WLAN DfP systems, both for detection [19], [36] and tracking
systems [28]. We leave the comparison with other classes of
DFP systems to Section V.

A. Comparison with DfP Detection Systems
We start by a brief description of the techniques, followed

by the different aspects we evaluate the techniques on. Finally,
we present the results of the comparison.

1Note that spurious and temporary mis-detections are handled by the
particle filter motion model.

Results with static profiles
Moving Moving MLE [19] Ichnaea
Average [36] Variance [36]

FN Rate 0.1446 0.1426 0.0363 0.0468
FP Rate 0.1385 0.104 0.1547 0.0378
F-measure 0.858 0.8743 0.9099 0.9574

Results with testing profiles separated two weeks
from the training profiles.

Moving Moving MLE [19] Ichnaea
Average [36] Variance [36]

FN Rate 0.2165 0.319 0.1653 0.0472
FP Rate 0.0711 0.1561 0.952 0.0782
F-measure 0.8449 0.7414 0.5991 0.9383
Overhead No overhead Minimal Worst Minimal

TABLE IV
PERFORMANCE COMPARISON WITH PREVIOUS DfP DETECTION

TECHNIQUES ON TESTBED 1.

1) Detection systems compared to Ichnaea: Three tech-
niques are considered for the comparison:

1) The moving average technique [36] uses a central
tendency feature, i.e. the average. It uses two sliding
window averages: a short window average representing
the current system condition and a long window average
representing history. The idea is to compare the two
averages and if the difference is above a threshold, a
detection is announced. It is important to note that the
moving average technique does not require a training
phase.

2) The moving variance technique [36] uses a dispersion
feature, i.e. the variance. Similar to the moving average
technique, it compares the variance of the current system
state, based on a sliding window, to the variance of the
silence period, obtained through a training phase. If the
difference is above a threshold, a detection is announced.

3) The maximum likelihood classification (MLE) technique
[19] constructs profiles for the silence period as well
as for the motions period for different locations in the
area of interest. The profiles represent the signal strength
distribution for each stream at each location. Therefore,
it involves significant training data. During the detection
phase, the system finds the profile that has the maximum
likelihood given a signal strength vector, one entry for
each stream. If the estimated profile corresponds to a
motion profile, an alarm is generated.

2) Comparison aspects:
• Static accuracy: accuracy when the system is evaluated

with the same profiles it was trained on (if any). This is
to test the best attainable accuracy.

• Profiles’ robustness: that is how consistent the perfor-
mance of the system is when the tested profiles are
different from the trained ones, for example due to
temporal changes in the environment. For this case, the
testing data set is collected two weeks after the data sets
used for training.

• Overhead: the effort needed to deploy the system.
3) Comparison results: Table IV shows the comparison

results in two cases. In terms of the static accuracy, the results
show that the F-measure of the Ichnaea system is better
than other systems. Compared to the Moving Average and
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Area Number of Streams Detection FN-Rate Detection FP-Rate Detection F-measure Best Median Distance Error
Testbed 1 186 m2 11 0.0468 0.0378 0.9574 2.26 m
Testbed 2 352 m2 8 0.0066 0.1341 0.8424 1.71 m
Testbed 3 140 m2 12 0.0966 0.0372 0.9311 2.5 m

TABLE III
SYSTEM PERFORMANCE FOR TESTBEDS 1, 2 AND 3.
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Fig. 10. CDF of distance error for Testbed 2 of Ichnaea compared to Nuzzer.

Moving Variance techniques, the Ichnaea system provides high
accuracy due to its different modules.

In terms of profiles’ robustness, the Moving Average tech-
nique does not store any profiles. Therefore, its overall per-
formance is low but almost the same as the profiles change.
On the other hand, the robustness of the MLE technique is
the least as it uses the mean signal strength values as the
features used for classification. Therefore, after two weeks, the
distribution of the signal strength does not follow the learned
one. This is why the FP rate for the MLE technique is too
high. It can also be noted that Ichnaea performance is the best
because Ichnaea uses the variance for its operation (dispersion
feature) and employs techniques for adapting to changes in the
environment. This is why Ichnaea performance is better than
the Moving Variance in general, although the Moving Variance
uses the same feature as Ichnaea.

In terms of overhead, the Moving Average technique has
the least overhead as it does not need any learning phase. The
Moving Variance and Ichnaea deployment need to construct
normal profiles by collecting samples for two minutes when
the human is not present. On the other hand, the MLE
technique has the worst overhead as it constructs motion
profile at each location in the area of interest in addition to
the normal profile.

In summary, although the static detection accuracy of Ich-
naea is as accurate as the MLE technique, the MLE technique
has significantly higher overhead than Ichnaea because of its
motion profile requirements. In addition, Ichnaea is the most
robust technique to temporal changes in the training profiles
and significantly outperforms the remaining techniques.

B. Comparison with DfP Tracking Systems

In this section, we compare Ichnaea performance to
the Nuzzer probabilistic system presented in [28] and the
Quadratic Discriminant Analysis (QDA) and Linear Discrim-
inant Analysis (LDA) deterministic approaches presented in
[35]. All are in the area fingerprinting based DfP tracking
systems and are evaluated in Testbed 2. A fingerprint of 19
locations was built to cover the whole area of Testbed 2.
A person is standing at each location about one minute to
fingerprint it. The evaluation of this system was made using
only 8 streams, which were observed to provide adequate
accuracy for all three systems in Testbed 2. Figure 10 shows
a comparison of the performance of all three systems. The
figure shows that Ichnaea provides an enhancement in median
distance error of more than 22%, 60% and 230% over Nuzzer,
QDA and LDA respectively. It is important to note that
Ichnaea also requires significantly less calibration overhead of
only two minutes of signal recording when no one is present
in the area of interest with no requirement of access to any
specific areas. On the other hand, all other systems required
a total calibration of 20 minutes, other than the work done to
plan the grid covering the area, for a 352 m2 area with the
requirement of having access to all parts of the area of interest
so that a person could stand there for one minute per location.

V. RELATED WORK

Device-based localization systems have been an active field
of research. Several systems have been proposed for both
motion detection and tracking of an entity carrying a device
either with the use of special hardware like accelerometers or
motion sensors [4], [16], [23], [25], or by using the existing
network infrastructures like wireless networks [10], [15], [32],
[37] and GSM [1], [31]. DFP systems provide an equivalent
functionality without requiring any hardware which enables
this new technology to be used in different applications includ-
ing smart environments and intrusion detection and tracking.

Different classes of device-free localization systems have
been proposed. Computer vision [14], physical contact based
systems [20] and infrared-based (IR) systems [17] these tech-
nologies share the requirement of installing special hardware
to handle the device-free different functionalities and are
limited to line-of-sight vision or direct contact and thus
they require a high cost deployment to cover large regions.
Moreover, regular cameras can fail to work in the dark or in
the presence of smoke, and they can cause privacy concerns.
Other technologies include the usage of wireless sensors for
tracking transceiver-free objects [38] as well as the usage of
RFID tags [18].

Another class of device-free localization systems are radar
systems. MIMO radar employs multiple transmit waveforms
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MIMO Radar-based Radio Tomographic Fingerprinting based Ichnaea System
Systems Imaging (RTI) WLAN Systems

Measured Physical Quantity Reflection and scattering RSS attenuation Changes in RSS Changes in RSS
Range (based on frequency) Short Long Long Long
Accuracy Very High High High High
Substantial Calibration Efforts No No Yes No
Robustness to changes in the environment N/A N/A No Yes
Non-LOS localization Yes No Yes Yes
Complexity of single node (or device) High Low Moderate Moderate
Number of streams N/A (echo based) Large (756) Small (6) Small (9)
Special hardware required Yes Yes No No
Covering large areas Limited by its short Limited by number of Yes Yes

range (high frequency) deployed nodes (LOS)
TABLE V

COMPARISON OF DIFFERENT RF DEVICE-FREE PASSIVE TRACKING SYSTEMS.

and has the ability to jointly process the echoes observed at
multiple receive antennas [5], [9]. Elements of the MIMO
radar transmit independent waveforms resulting in an omnidi-
rectional beampattern. It can also create diverse beampatterns
by controlling correlations among transmitted waveforms. In
MIMO, different waveforms are utilized and can be chosen to
enhance performance in a number of ways. Although this class
of radar systems can provide accurate detection and tracking
they require complex deployments.

Radio tomographic imaging (RTI) [21], [22], [34] is another
popular device-free localization technology. RTI relies on the
deployment sensors and the analyzes the effect of the moving
entity on each of wireless link in order to infer the intruder’s
location. The method takes advantage of the motion-induced
variance of RSS measurements made in a wireless peer-to-
peer network. Accurate detection and tracking capabilities of
RTI systems require the dense deployment of a large number
of wireless sensors.

WLAN device-free passive systems try to avoid the above
drawbacks by using the already available wireless infras-
tructure. Techniques for DfP detection [11], [19], [36] and
tracking [13], [28], [36] were introduced. The proposed tech-
niques for the detection capability are either based on time-
series analysis like the moving average and moving variance
techniques proposed in [36] or based on classification using
the maximum likelihood estimation [19]. As for tracking,
fingerprinting based DfP systems [28], [29], [35] track human
motion by relying on passive radio maps. Passive radio maps
are constructed in the offline phase making a person stand at a
number of locations covering the area of interest and recording
the effect the person has on RSS readings at monitoring points.
Each new reading in the online phase is classified to one of
the locations in the radio map.

The Ichnaea system is a WLAN device-free localization
system that provides both detection and single entity tracking
capabilities. Compared to the previously proposed WLAN
DfP detection techniques, the usage of the statistical anomaly
detection technique, along with the other techniques devised
for adapting to environment changes and refining the decision,
enable Ichnaea to achieve low deployment overhead, high
accuracy and high robustness to changes in the environment
as compared to other WLAN systems that require regular pro-
fessional calibration to maintain accuracy. Compared to earlier
WLAN DfP tracking systems, Ichnaea requires significantly

lower overhead as it doesn’t require a passive radio map and
relies on tracking anomalous behavior of different wireless
links to estimate the moving entity’s location. Although its
approach might seem similar to RTI systems, Ichnaea relies
on a significantly smaller infrastructure and relies on detecting
anomalous behavior of RSS values as compared to signal
attenuation in RTI. Table V compares Ichnaea with the state
of the art DfP tracking systems.

VI. CONCLUSIONS AND FUTURE WORK

We presented the Ichnaea system that enables device-
free passive motion detection and tracking using the already
installed wireless networks. Ichnaea uses statistical anomaly
detection techniques to provide its detection capability. It also
employs profile update techniques to capture changes in the
environment and to enhance the detection accuracy. Once
detected, we showed how Ichnaea uses a particle filter model
based on the anomaly scores of the different streams and a
human motion model for tracking the motion of a single entity
in the area of interest.

We evaluated the system in three different environments,
rich in multipath. The results showed that Ichnaea can provide
an accurate detection reaching an F-measure of at least 0.93.
In addition, it can track a human with a median distance error
of a maximum of 2.5m. The performance of the Ichnaea
system was compared to the previously introduced techniques
for WLAN DfP detection and tracking systems. The results
showed that Ichnaea outperformed the state-of-the-art tech-
niques in terms of robustness and accuracy while maintaining
minimal deployment overhead.

Currently, we are expanding Ichnaea in several directions
including extending the approach for multiple entities tracking.
Furthermore, we are performing a study of possible sources
of noise in typical wireless environments, e.g. other devices
inside or outside the area of interest, and how to reduce
their effect. We are also studying how the detected entity’s
characteristics, e.g. size, shape and motion pattern, can affect
the system performance. Moreover, the site configuration, i.e.
the positions of the APs and MPs, can also be studied in order
to optimize the system performance on different testbeds.
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