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Abstract—Wireless sensor and actuator networks have been
extensively deployed for enhancing industrial control processes
and supply-chains, and many forms of surveillance and envi-
ronmental monitoring. The availability of low-cost mobile robots
equipped with a variety of sensors in addition to communication
and computational capabilities makes them particularly promis-
ing in target coverage tasks for ad hoc surveillance, where quick,
low-cost or non-lasting visual sensing solutions are required, e.g.
in border protection and disaster recovery. In this paper, we
consider the problem of low complexity placement and orientation
of mobile cameras to cover arbitrary targets. We tackle this prob-
lem by clustering proximal targets, while calculating/estimating
the camera location/direction for each cluster separately through
our cover-set coverage method. Our proposed solutions provide
extremely computationally efficient heuristics with only a small
increase in number of cameras used, and a small decrease in
number of covered targets.

I. INTRODUCTION

Recent advancements in manufacturing low-cost wireless
battery operated cameras have made them increasingly more
feasible and affordable in a variety of applications such as
smart surveillance, environment monitoring, traffic manage-
ment, and health care [1]. Mobile cameras can be additionally
used in Visual Sensor Networks (VSNs) for ad-hoc surveil-
lance where a set of wireless cameras are to survey areas
with little to no available infrastructure, or when rapid and
non-lasting deployment is necessary [2]. Recently, Micro Air
Vehicles (MAVs) (a.k.a. microdrones or small/micro UAVs),
typically equipped with cameras, were proposed to be used
as mobile cameras [3]. One of the main advantages of using
MAVs is their maneuverability and small size enabling them
to be placed in locations that achieve optimal sensing coverage
in both indoor [4] and outdoor scenarios [3].

Smart surveillance with the assistance of mobile cameras
requires tackling multiple challenges including targets or area
coverage, tracking, activity detection and others. In this paper,
we address target coverage. The problem of optimal camera
placement to maximize coverage has been shown to be NP-
complete in many variations for both area and target coverage
in both isotropic [5] and anisotropic sensors [6]. Therefore, it
has been simplified in many forms in the field of robotics and
sensor networks [7]. Various studies have addressed area cover-
age [6], [8], [9] and target coverage [2], [5], [6], often making
simplifications include fixing camera locations, discretizing
space and/or camera pan. Approximation algorithms for the
case of anisotropic sensors have also been proposed [5], [6].
Despite these efforts, finding a near-optimal computationally
efficient algorithm in arbitrarily large areas and/or for an
arbitrary number of targets has remained a challenge.

Motivated by the need for computationally efficient algo-
rithms for autonomous control of the mobile visual sensors,
we propose efficient near-optimal algorithms for finding the
minimum number of cameras to cover a high ratio of a set
of targets. First, we develop a basic method, called cover-set

coverage to find the location/direction of a single camera for
a group of targets. This method is based on finding candi-
date points for each possible camera direction and spanning
the direction space via discretizing camera pans. We then
propose two algorithms which divide targets into multiple
clusters and use the cover-set coverage method to find the
camera location/direction for each cluster: (1) Smart Start
K-Camera Clustering (SSKCAM): starting from a given set
of clusters identified by an off-the-shelf clustering algorithm,
we iteratively adjust clusters based on the coverage status
of their comprising targets, and recalculate the camera lo-
cation/direction for each individual cluster until convergence
is achieved; (2) Fuzzy Coverage (FC) algorithm: we cluster
targets allowing overlapping (fuzzy) clusters and then find
the camera location/direction for each cluster. We evaluate
our proposed algorithms via a simulation study in MATLAB
and observe that our algorithms offer lower computational
complexity compared to earlier work. This gap increases as the
coverage range or number of targets increase reaching more
than 50× faster performance using similar number of cameras
to cover at least a pre-determined fraction of targets.

The rest of this paper is organized as follows. In Section
II, we state our assumptions and pose our problem. In Section
III, we present the details of our proposed algorithms. We
evaluate these algorithms in Section IV and conclude the paper
in Section V.

II. ASSUMPTIONS AND PROBLEM STATEMENT

A. Assumptions

Targets: We assume that targets reside on a 2D plane,
as typically done in target coverage problems [2]. We also
assume that targets are represented as points and that their
location are known [2]. This information may be obtained by
a higher tier low-granularity camera, used only for detection
and localization, and conveyed to lower tier cameras [10], or
via using RFIDs [11].

Cameras and Camera Coverage: We assume having
horizontal cameras with coverage areas shaped as circular
sectors, highlighted in orange in Figure 1. The maximum depth
of view of a camera is the radius of this sector, Rmax. The
Angle of View (AOV) of the camera is the angular width of
this sector, and is approximately inversely proportional to the
Lens’s focal length. For target Tj to be covered by camera Ci,
(1) Tj should be within Rmax distance of the camera, and (2)
the angle between Ci’s direction and Tj should be within the
AOV of the camera. We impose hard constraints on coverage
of a target: either completely covered or not covered at all.
Occlusions are not considered herein as it is typical in many
target coverage studies. We assume mobile cameras capable of
moving to a certain position with a certain orientation when
commanded to. A minimum acceptable threshold is posed
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Fig. 1. Coverage area of one camera

on the fraction of covered targets, referred to by Coverage
Termination Criterion (CTC).

Camera Configuration System and Medium: A cen-
tralized computational entity calculates and informs the loca-
tion/orientation of all mobile cameras. This may be a separate
entity or one of the mobile cameras. A wireless communication
channel exists between the mobile cameras and the central
computational entity. To avoid the necessity of multihop com-
munication, coverage areas are assumed to be smaller than the
wireless communication range.

B. Problem Statement

Target Coverage Problem: Given a set of targets in a two-
dimensional plane and using homogeneous horizontal cameras
with a given maximum AOV and maximum coverage range
Rmax, find the minimum number of cameras, their position
and orientation such that all targets are visible by at least one
camera.

The above problem is proved NP-Complete [5]. We sim-
plify it by changing the objective to covering at least a pre-
determined percentage of targets with the minimum number of
cameras whose locations and directions are to be found. Note
that this percentage may be made arbitrarily small.

III. METHODOLOGY AND PROPOSED SOLUTIONS

In this section we first describe our proposed method,
Cover-Set Coverage, to find the location/direction for a single
camera that is to cover one cover-set in III-A. We then propose
two algorithms, Smart Start K-Camera Clustering and Fuzzy
Coverage Algorithm, to divide a group of targets with arbitrary
locations to a small number of cover-sets.

A. Cover-Set Coverage Method

Definition 1: A cover-set: A group of targets, Ti, i ∈
{1..N} that can be covered by one camera under certain
camera specifications, i.e. given Rmax and AOV .

Cover-Set Problem: Given a set of targets S = {T1..TK},
determine whether this set is a cover-set, and if so, find the
location and direction of the single camera, with AOV = θ
and maximum coverage range of Rmax that covers all targets.

To solve this problem we first form H(S), convex hull of
S. H(S) is a polygon in 2D, see Figure 2. To cover all targets
in set S using one camera with θ < 2π, the camera has to
reside outside H(S). This can be easily seen by noting that
the sum of angles from a point inside a convex polygon to all
its vertices is 2π. Therefore, unless θ = 2π, it is not possible to
cover all targets in S with a point inside the convex polygon.
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Fig. 2. Cover-Set Coverage Method: Targets are the green dots. H(S) is
the polygon with black boundaries. For a given camera direction φ (the red
line), maximum of 4 points are selected as camera location candidates. Two
lines which make θ/2 (green lines) and −θ/2 (blue lines) with the camera
direction are passed through each target. These ”outer-most” lines (bolded)
intersect at four points P1 to P4. Each point is associated with an area filled
in blue, e.g. point P1 with area A1

1) Base Case: Continuous Camera Direction Angle Space:
To find regions that meet the AOV requirement for all targets
at a specific given camera direction, the following steps will
be followed, also illustrated in Figure 2.

(i) Set camera direction (denoted by the red lines in the
figure) at angle φ relative to the x-axis. (ii) Find u and v
values such that −u

v = tan(|φ − θ/2|) (many pairs of such
values may be found and any of them would work for our
purpose). (iii) For each target point, pass a line with the same
slope of −u

v . For each target Ti = (xi, yi), such a line will
follow equation uxi + vyi = wi. (iv) For all targets Ti ∈ S,
find w∗max = maxwi, ∀i. (v) Since H(S) is a convex polygon,
the line corresponding to c∗max, i.e. ux+ vy = w∗max forms a
supporting hyper-plane to it. (vi) Similarly, find the supporting
hyperplane to this polygon from underneath by finding w∗min =
min{wi, ∀i}. The corresponding line ux + vy = w∗min also
forms a supporting hyper-plane to this polygon. Note that the
above set of steps make an O(N) operation.

For the camera to be able to cover all targets, its location
must be in the region either on or above the max hyperplane,
ux + vy > w∗max, or in the region on or below the min
hyperplane, ux + vy < w∗min. Otherwise, one of targets
will be viewed by an angle larger than θ/2 relative to the
selected camera direction. Using the exact procedure above,
find lines px + qy = r∗min and px + qy = r∗max where
−p

q = tan(φ+θ/2). Again, the solution has to be on or above
the max hyperplane, px+ qy > r∗max or on or below the min
hyperplane px+ qy < r∗min.

Next, to find the camera location candidates, the four
intersection points will be found from the above procedure:

(i) P1 is the intersection of ux+vy = w∗max and px+qy =
r∗max, (ii) P2 is the intersection of lines ux+ vy = w∗max and
ux + vy = w∗min, (iii) P3 is the intersection of ux + vy =
w∗min and px+ qy = r∗min, (iv) P4 is the intersection of lines
px+ qy = r∗max and px+ qy = r∗min.

Based on the value of θ (AOV), following cases will apply:

Case θ < π/2 : There are two feasible regions for placing
the camera such that the AOV requirements are met for all
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targets. These regions are convex cones centered at points P2

and P4 in the figure and are highlighted in blue. We call them
A2 and A4. It can be shown that if neither of points P2 and
P4 meet the coverage range requirements of all targets in S,
then no other location in the two feasible regions A2 and A4

can. This is shown in the figure for area A2 and target T1.

Case θ ≥ π/2 : All four points P1, P2, P3 and P4 (and
their associated areas A1 to A4) meet the AOV requirements.
However, unlike in the previous case, only for points P1 and
P3 we can ensure that if they do not meet the coverage range
requirement, then no point in A1 and A3 can. To find the
feasible solution regions in areas A2 and A4, circles centered
at all targets Ti ∈ S, of radius Rmax, are to be overlapped. If
there is an overlapping region, then all points in that region
are solution points. This is an O(N3) operation.

Case θ = π/2 : All four points P1 to P4 meet the AOV
requirements, and are hence candidate points. Also, for all
these points we can show that if their distance to a target does
not meet the coverage range criterion, then no point in their
associated region (A1 to A4) does.

2) Cover-Set Coverage By Discretizing Camera Direction
Angle Space: The above method may lead to maximum of
4 points for each possible value of φ. To reduce our search
space, we discretize φ by quantizing it to 2π/Δφ values evenly
distributed in the interval of [0, 2π). For AOV ≤ π/2, there
will be 2 or 4 candidate points for AOV < π/2 and AOV =
π/2 respectively. For AOV > π/2, finding candidate points
requires overlapping areas A2 and A4 with circles of radius
Rmax formed around each targets (an O(N3) operation). To
maintain complexity low, we instead use points P2 and P4 ,
see Figure 2. Therefore, the complexity of finding one camera
location/direction for a set of targets S (which we hope form
a cover-set) with size ||S|| is O(||S||2π/Δφ).

B. Smart-Start K-camera Clustering

This algorithm is akin to k-means clustering. However,
unlike k-means clustering where the criterion for cluster-
ing data points together is only the distance between them
(in the selected features), here the goal is for targets that
can be covered by one camera (meeting both range and
AOV requirements) to be clustered together. In Smart-Start
KCamera clustering (SSKCAM), we initially cluster targets
using k-means clustering. Afterwards, targets are re-assigned
to adjacent clusters which can cover them, and find new
location/direction for camera of each cluster using the method
in III-A, until no further move is possible. SSKCAM is an
improved version of our previously proposed algorithm KCAM
in [12]. We refer the readers to that paper for the pseudo-code
of KCAM which may be modified to reflect SSKCAM.

The computational complexity of SSKCAM depends on
that of the clustering algorithm, and the cover-set coverage
method used to find camera location/direction for each cluster.
For k-means clustering, with binary updating in k, the com-
plexity for clustering is O(log(K)NM) where N is the num-
ber of targets, K is the final number of cameras, and M is the
number of iterations to reach an equilibrium for each given k.
Therefore, the overall complexity is the sum of the complexity
of the two subtasks, i.e. O(log(K)NM) +O( 2πΔ φ×N).

 

Fig. 3. Overlapping clusters allow less clusters

C. Fuzzy Clustering

SSKCAM allows a target to belong to only one cluster.
This is a short-coming in the example shown in Figure 3 and
explained below. In this figure, with overlapping clusters, the
red targets would be clustered with both cluster A and B,
resulting in a total of two clusters. With no overlap however,
at least 3 clusters are required to cover all targets, e.g. A, C
and D. We therefore consider using Fuzzy or overlapping
classification where a target can belong to multiple clusters
each with a different probability. For each identified cluster,
we then apply the cover-set coverage method described in III-A
to find its camera location and orientation.

The computational complexity of this algorithm depends
on that of the fuzzy clustering algorithm used, and that of
cover-set coverage method applied for finding camera loca-
tion/direction for each cluster. Using fuzzy k-means clustering,
the overall complexity will remain linear in both dimensions
and number of targets [13].

IV. EVALUATION

A. Simulation Set-Up

MATLAB simulation was used to compare the performance
of the proposed algorithms against those of others previously
proposed in the literature. The location of targets were ran-
domly generated using a uniform distribution over a given
square-shaped area. All results are averages of ten randomly
generated scenarios.

Two near-optimal heuristic algorithms amongst those pro-
posed in [9] were selected to compare against ours, and were
modified to cover specific targets instead of a whole area:
(i) greedy search, is the closest to optimal in coverage, but
is the most computationally demanding algorithm, and (ii)
dual-sampling, which is the most computationally efficient
algorithm proposed therein. To the best of our knowledge, no
other heuristic algorithms could be used which made similar
assumptions and would allow us to compare our algorithms
against. Note that it is difficult to make a meaningful compar-
ison between our algorithms and those which make additional
assumptions on location of cameras.

In greedy search, sensors are placed one at a time. The
position and orientation of each additional sensor is decided
considering the rank of all possible location-orientation pairs.
Each position/orientation pair is ranked by how many remain-
ing targets it can cover. Therefore, this algorithm requires
O(D2 2π

ΔφN
2 logN) computations and O(D2 2π

Δφ ) stored ele-
ments, where D is the dimension of the area, N is the number
of targets, and Δφ is the pan step. In dual-sampling (D-
Smp), one target is randomly selected each time. The location
of the camera is chosen from a limited area in the Rmax
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Parameter Range Nominal value
Dim 50m× 50m 50m× 50m
AOV ∈ {45◦ − 150◦} 90◦

Target count 20− 200 50
Rmax 5m− 30m 15m
Δφ - π/6
CTC - 0.9

TABLE I. SIMULATION PARAMETERS: RANGE AND NOMINAL VALUES
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Fig. 4. The impact of CTC on required number of cameras

vicinity of this target. Then the location-orientation pair with
the highest rank that can cover the selected target is selected.
Therefore, it requires O(N2 logNR2

max × 2π
Δφ ) computations

and O(R2
max

2π
Δφ ) stored elements.

Parameters: The values of the parameter are summarized
in Table I. We set the maximum allowed number of cameras to
2/3 of targets. Coverage Termination Criterion (CTC) indicates
the minimum acceptable covered target fraction.

Metrics: (1) number of cameras, (2) execution time, and
(3) fraction of uncovered targets.

B. Performance Results

The effect of minimum acceptable coverage criterion:
It is possible to set CTC arbitrarily high or even set it to one.
However, this may add to the number of cameras required
for the coverage task. Depending on the specific application
and its allocated budget, we may be willing to compromise
coverage to a small extent to save in the number of required
cameras. In Figure 4, we depict the impact of CTC choice
on number of cameras. We display the number of cameras
obtained by dual-sampling (with 100% coverage) as a base
for comparison. Note that by allowing 10% uncovered targets,
we can save about 40% in the number of cameras. For this
reason, for the rest of our simulations, we set the nominal
value of CTC at 0.9 (i.e. 90% coverage).

The effect of target density: The performance of
SSKCam, FC, Greedy and D-Smp are compared in Figures 5.
Figure 5(a) shows that the Greedy and 2Smp algorithm achieve
perfect coverage (in the tested scenarios), while SSKCam and
FC leave a fraction of targets uncovered. This is because we
allow our solutions to find imperfect coverage at the cost
of lower computational complexity. SSKCAM shows a better
coverage performance than FC. In Figure 5(b), we eliminated
the results for greedy search because its values were so large
that the scale of the figure would shadow the performance
difference among other algorithms. As can be seen, FC has
a very low execution time. Also SSKCAM does better than
D-Smp, and exhibits better scalability as number of targets is
increased. For FC, the advantage in computational complexity
is a result of the one time operation of clustering (instead of
iterating) and camera configuration computations in section
III-A. However, this leaves more targets uncovered in compar-
ison to SSKCAM. As can be seen in Figure 5(c), permitting

compromise in fraction of covered targets also yields in camera
numbers obtained to be very similar to those from greedy
and D-Smp, for SSKCAM, and even lower (better) for FC.
Note that the latter advantage for FC comes at the price of
lower coverage fraction. Also note that for these figures and
the ones that will follow for other parameters, the number of
cameras and uncovered target fraction should be interpreted
together. This is because of the CTC ratio fixed at 0.1, and that
in SSKCAM, camera number incrementing is stopped once
minimum coverage criterion is reached.

The effect of AOV: We compare the performance of
the five algorithms for different values for AOV: 45◦ (AOV
of an unzoomed webcam), 60◦, 90◦, 120 and 150 for fish-
eyed lenses. The results are shown in Figures 6. It can be
noticed from these figures that, as expected, the number of
required cameras for all 5 algorithms improves (and almost
converges) with wider AOV. The performance in terms of
coverage and execution time across the different algorithms
follows the same pattern as in Figure 5(c): perfect coverage for
greedy and 2Smp, and lowest for FC. Execution time decreases
as AOV increases for all algorithms; FC has a very low
(good) complexity, will Greedy and 2Smp have the highest.
Finally, the execution time of SSKCAM and FC has a bump
at AOV = π/2 due to the existence of 4 candidates instead
of 2 at every given camera direction φ (see section III-A).

Remark: Some range of values for Rmax make the target
coverage problem trivial. Consider the covering-density of K
cameras with range Rmax and AOV = θ defined in [6] as
K×πR2

max(
θ
2π )

D2 where the nominator measures the area covered
by all cameras and the denominator measures the total area
surface. Since this calculation does not include area overlap, it
is a conservative metric. Nonetheless when this value measures
to one, we have covered all the given area, and therefore, the
target coverage problem becomes trivial.

The effect of Rmax: We varied the value of Rmax between
5m and 30m. Note that for one specific camera type this
value reflects the image quality required by the application.
The results are depicted in Figure 7. Again as expected, the
number of required cameras decreased for all 5 algorithms as
Rmax increases. This quantity was also quite similar across
all the algorithms. To compare the execution times of these
algorithms, we again eliminated the results for greedy since
they were very high and would skew the scaling. As can be
seen in the figure, while FC and SSKCAM’s execution time
decreases as Rmax increases, D-Smp exhibits an exponential
increase in execution time.

V. CONCLUSION AND FUTURE WORK

In this paper, we studied the problem of positioning and
orienting mobile cameras to cover a given group of targets.
We first develop cover-set coverage method, which finds the
location/direction of a single camera such that the number
of targets covered is near-maximal. We then proposed two
heuristic computationally efficient and centralized algorithms:
smart start k-camera clustering and fuzzy clustering algorithm,
both of which divide targets to multiple clusters and apply
cover-set coverage method on each cluster. We used sim-
ulation to evaluate our methods and found that they have
less computational complexity, but provide lower coverage
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Fig. 5. Performance comparison between 4 camera placement/orientation algorithms vs target count
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Fig. 7. Performance comparison between 4 camera placement algorithms with varying Rmax

than the computationally expensive but near-optimal methods.
Our next steps are, to develop distributed versions of the
proposed algorithms, cover mobile targets, and address ad-hoc
communication and path-planning while considering energy
consumption issues that will arise in such settings.
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