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ABSTRACT
Recent advancements in manufacturing low-cost wireless bat-
tery operated cameras has made their application in Wire-
less Video Sensor Networks (WVSN) increasingly more fea-
sible and affordable. The application of robotic sensing
agents equipped with cameras in WVSNs, seems particularly
promising in performing coverage tasks for ad hoc surveil-
lance. Their application in this context can be specifically
useful for surveying areas with little to no available or afford-
able infrastructure, or where quick deployment is necessary.
In this paper, we address the target coverage problem for
finding the minimum number of cameras, their placement,
and orientation to cover arbitrarily located targets in an
area of interest. We propose a computationally light-weight
heuristic, where the number of used mobile cameras is close
to those found by near-optimal algorithms. Specifically, we
address this problem for non-uniform target distributions
that naturally form clusters. Having light-weight heuristics
will be particularly useful when the application is required
to adapt to target mobility and/or is implemented in embed-
ded systems. Our simulation study shows that when clusters
are sufficiently separated, the required number of cameras
found by our proposed method is very close to those acquired
by the near-optimal algorithm, whereas the computational
complexity of our algorithm is about ten times less. We also
deploy our algorithm on a drone testbed using off-the-shelf
components to verify its feasibility.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: Network Ar-
chitecture and Design—Network topology ; I.2.9 [Computing
Methodologies]: Robotics—Sensors
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1. INTRODUCTION
Manufacturing low-cost wireless battery operated cam-

eras has become increasingly cheaper in the recent years,
making them more affordable and feasible to adopt in a
wide range of applications including environment monitor-
ing, smart surveillance, and health care [2, 3, 28]. Wireless
cameras are additionally useful in Visual Sensor Networks
(VSNs) for the purpose of ad-hoc surveillance, where they
are to survey areas which have little available infrastructure,
or when it is required to establish rapid and/or temporary
deployments [24]. In the recent years, Micro Air Vehicles
(MAVs) (a.k.a. small/micro UAVs or microdrones), typi-
cally equipped with a variety of sensors, including cameras,
have been considered to be used as wireless mobile cam-
eras [4, 26–28, 30]. MAVs offer easier maneuverability and,
thanks to their small size, are able to be positioned in lo-
cations, inaccessible to other forms of robots, that achieve
optimal sensing coverage in outdoor [27] as well as indoor
settings [5].

While using wireless mobile cameras for the purpose of
smart surveillance involves addressing several challenging
problems including area [1, 7, 13, 16, 20, 21, 31, 35] and tar-
get coverage [1,6,14,16,19,24,29,34], activity detection [29],
and target tracking [38], in this paper we focus on target cov-
erage. The problem of optimal camera placement to max-
imize coverage has been proven to be NP-complete in var-
ious forms for both area and target coverage, and for both
isotropic [19] and anisotropic sensors [16]. It has therefore
been simplified in different ways both in the robotics and
sensor networks fields [8,15,36]. Common simplifications in-
clude space and/or camera pan discretization, and/or fixing
camera locations. Approximation algorithms for anisotropic
sensors have been proposed in the past [16, 19]. Unfor-
tunately, despite such efforts, finding computationally ef-
ficient near-optimal algorithms for an arbitrary number of
targets and/or in randomly-sized areas still remains a chal-
lenge. Having a computationally efficient camera placement
method becomes particularly crucial when the application
is required to adapt to targets mobility and/or when it is to
be deployed on embedded systems.

Considering the need for computationally efficient algo-
rithms for autonomous control of the mobile visual sensors,
we propose an efficient heuristic algorithm for finding the
minimum number of cameras to cover targets. Our algo-
rithm yields a near-optimal number of required cameras
when targets naturally reside in clusters each with one dom-
inant direction of stretch. Throughout this paper we refer
to such clusters as directional clusters. Examples of direc-



tional clusters in real-world applications include people lines
in amusement parks, people taking tours of historical sites
or attractions, and some animal herds. Our contribution in
this paper is the proposition of our Cluster First algorithm
(CF), a low-complexity two-step iterative algorithm for tar-
get coverage. In each iteration, we first divide targets into
a number of clusters, and then apply our devised method
to find the camera location and orientation for each direc-
tional cluster. If any target is left uncovered, we increase
the number of clusters and iterate again. We refer to this
proposed method for finding the location and orientation
of a single camera to cover a group of targets by Simple
Cover-Set Coverage, SCSC. Although performing these ac-
tions requires knowledge of all targets’ locations in the area
of interest, the required computations are light-weight and
may either be performed centrally on one machine, or dis-
tributed on multiple camera-equipped robots, if communi-
cation amongst them is viable.

We evaluate our proposed algorithm via simulations con-
ducted in MATLAB, and verify its feasibility using a simple
testbed [32]. The simulation results show that, when targets
form directional clusters, our algorithm offers up to ten times
less computational complexity compared to other compara-
ble algorithms, while requiring a number of cameras similar
to those required by the near-optimal methods, e.g. only
5% more cameras on average in less dispersed directional
clusters. We evaluate different scenarios on our testbed that
involve a mixture of static and mobile targets, where a drone
was able to modify its location and direction according to
the CF algorithm and cover targets, in real-time, as the lo-
cation of the mobile targets varied.

The rest of this paper is organized as follows. The related
work is presented in Section 2. Section 3 is dedicated to
describing the assumptions, notations, and definition of our
problem. We present the details of our proposed algorithm
in Section 4. In Section 5 we go over our performance eval-
uation. Finally, the paper is concluded in Section 6 where
future work is also outlined.

2. RELATED WORK
While different applications require varying criteria for

target coverage, a typical criteria is that at least one camera
has the target in its view with acceptable quality. The def-
inition of acceptable quality depends on the purpose of the
application, i.e. detection, identification, or recognition [11].
This is the common assumption made in many coverage
studies [1, 6, 14, 24, 34]. Some applications instead require
a target to be fully angularly covered [36]. Herein, we as-
sume that, if a target is seen by at least one camera from
any angle, it is covered. While target coverage maximization
has been shown to be NP-complete for most variants [8,37],
many studies address this intractability by adding simplify-
ing assumptions. The following two categories are typically
considered for coverage problems:

(1) Area Coverage Maximization: This category is re-
lated to the classic Art Gallery problem [35]. The objective
in this problem is to find the location of the minimum possi-
ble number of guards in an art gallery such that every point
is seen by at least one guard. The Continuous-space Art
Gallery problem has been proved both NP-Complete and
APX-hard [31]. However, when space is discretized, poly-
nomial time log-approximation solutions exist [7,13]. While
guards can be considered as isotropic visual sensors, cam-

eras have both a limited coverage range and Angle of View
(AOV), i.e. are anisotropic, and thus make the coverage
problem with cameras more complex. Even after discretiza-
tion of space and camera pans, the problem solution remains
unscalable [20]. Authors of [20], also propose a few heuris-
tics which provide a coverage performance close to optimal,
but with high computational complexity. A random set of
deployed cameras have been used in [1] followed by posing
the problem as finding the minimum subset of such cam-
eras to be activated for attaining maximal coverage. This
problem was also proven to be NP-Complete.

In addition to the studies conducted by the sensor net-
works community, coverage maximization using anisotropic
and isotropic sensors has also been studied in the robotics
community [9, 15, 17, 33] and [10]. In this community, it is
typically assumed that the number of sensors are known,
and the problem becomes how to move and direct sensors
to optimize a coverage objective, such as an accumulation
function. In contrast to visual sensor network applications,
the coverage objective is typically different from area or tar-
get coverage. It is often the case that the location of targets
are defined based on an assumed distribution density func-
tion. This function reflects a measure of probability that
an interesting event takes place, or an object exists, at each
location. Such function is either somehow known [22] or con-
tinuously learned using sensor readings [33]. Furthermore,
in many of these studies, the sensor’s sensing capability is
assumed to follow a monotonically decreasing, continuous,
and differentiable function both in radius and angle [18].

Our work is different from this category in the coverage
objective. Our attempt is to provide maximum coverage for
a given set of targets, rather than an area or an event/target
distribution function. In our work, we consider dynamic
camera deployments and attempt to find low complexity so-
lutions for such scenarios.

(2) Target Coverage Maximization: Finding the min-
imal number of cameras and their optimal placement and
orientation is a special case of this problem using any di-
rectional sensor. Using simplifications, solutions have been
proposed in studies such as [1,6,14,24,34]. Fixed camera lo-
cations and discrete camera pans are assumed in [24], and a
heuristic is proposed. A set of directional sensors, randomly
scattered, are used in [6], a subset of which are selected one
at a time. In [1], a similar problem is considered where an
active set of camera sensors, and their directions, are se-
lected from a lager pool of initially placed cameras. Using
neighbor cooperation, fixed camera positions with variable
pan/tilt are assumed in [34] to follow mobile targets. Rotat-
ing Directional Sensors (RDS) are utilized in [14] to max-
imize various coverage objectives. The optimal solution to
these variants are shown to also be NP-complete, and there-
fore the authors propose heuristics.

Overall, the studies in this category assume either fixed
camera locations or have them selected from a pool of previ-
ously selected random positions. These assumptions sets our
study apart from the rest in this category. We introduced
our first attempt to solve the problem in [25].

Note on Coverage versus Tracking: Coverage may
be distinguished from tracking in that, the goal of coverage
is to make sure a certain area or group of targets are covered
by at least one camera at all times [38]. In that sense, the
activities of each particular target over time is out of the
scope of coverage.



3. OVERVIEW
In this section, we first state our assumptions regarding

the cameras, targets, and the overall environment we con-
sider in this paper. Afterwards, we provide a concise prob-
lem statement for our work.

3.1 Assumptions
Cameras and Camera Coverage: We assume the use

of horizontal cameras with circular sector coverage areas as
shown (highlighted in orange) in Figure 1. The radius of this
sector indicates the maximum range of view of a camera,
Rmax. The camera’s Angle of View (AOV) is the angular
width of this circular sector. We assume mobile cameras are
mounted on agile ground or flying robots and are therefore
able to move and redirect themselves to a certain location
and orientation when asked.

Targets: We assume that all targets are located on the
ground, or any 2D plane, as it is customary in target cover-
age problems [1,24]. We also assume that objects or targets
can be represented by points. To make coverage solutions
more realistic, multiple points can be used to represent big-
ger sized targets. Also, we assume knowledge of the location
of all targets [24]. This information may be acquired via
e.g. using RFIDs as it is done in [38]. Alternatively, in the
context of multi-layer sensor networks, this knowledge may
be acquired via a higher tier camera providing low granu-
larity coverage sufficient for detection and localization, but
insufficient for identification, recognition, or activity mon-
itoring [23]. Target Tj is covered by camera Ci if (1) its
distance with the camera is less than or equal to Rmax, and
(2) the line connecting Ci and Tj makes an angle less than
half the camera’s AOV with the direction of Ci. We assume
that targets are either fully covered, or fully uncovered, i.e.
no partial coverage. We do not consider occlusions in this
paper and leave its consideration for future work.

Camera Configuration System: A wireless communi-
cation channel is required between the mobile cameras and
the computational entities. If computations are performed
on the camera-equipped robots, these robots are considered
the computational entities. To avoid the necessity of mul-
tihop communication, and maintain simplicity, we assume
that the coverage area is smaller than the wireless commu-
nication range when running experiments in this paper.

Remark on Centralized vs Distributed Implemen-
tation: If only one computationally capable entity acquires
the location of all targets, it centrally calculates the location
and orientation of all mobile cameras and informs them ac-
cordingly. Alternatively, if all mobile cameras are informed
of the location of all targets, they each run the proposed
algorithm individually and relocate and reorient themselves
according to the outcome of the algorithm. If each mobile
camera is statically assigned an ID, a mapping between these
IDs and index in the generated camera configuration can be
used to determine the new locations of all cameras. Op-
timizing this scheme in terms of energy and time includes
making decision as to which mobile camera is to relocate to
which one of the decided locations. Making such decisions
necessitates path-planning, which we leave for future work.

3.2 Problem Statement
A set of targets reside in a two-dimensional plane. Us-

ing homogeneous horizontal cameras with a given maximum
AOV and maximum coverage range Rmax, we want to find
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Figure 1: Camera coverage area

the minimum number of cameras, their location, and direc-
tion, such that each target is visible by at least one camera.

The above problem has been proven to be NP-Complete
[19]. In this paper, we attempt to find a low-complexity
heuristic solution for the case of non-uniform target dis-
tributions wherein targets naturally reside in a number of
directional clusters.

4. PROPOSED SOLUTION
In this section we describe the two steps of our iterative

algorithm, Cluster-First (CF). The summary of this algo-
rithm is depicted in Figure 2. In each iteration, we first
divide the targets into a number, k, of clusters as described
in subsection 4.1. We then use our proposed Simple Cover-
Set Coverage method, SCSC, proposed in subsection 4.2 to
find the location and orientation of the single camera that
is to cover all targets in each cluster. As this task may
not be possible, at the end of these steps, we calculate the
number of targets that have been covered so far. If any
target is left uncovered, we increase the number of clusters,
k, using uniform steps, binary search, or a multiplicative-
increase/decrease scheme, and re-iterate until the coverage
criterion is met, i.e. all targets are covered. We may relax
the coverage criterion to only require a minimum fraction of
targets to be covered. Such criterion will result in a fewer
number of required cameras which may be important, for
instance when camera cost is an issue.

K = k0

Cluster targets to K clusters

Apply cover-set coverage 
method on each cluster

Count # of covered targets

Coverage 
criterion met ?

K= K+1

No

Done
Yes

Figure 2: Our Cluster-First (CF) iterative method
for finding the number, location, and orientation of
cameras to cover targets



4.1 Step 1: Clustering
At each iteration of CF, the number of clusters, k, (and

hence cameras) is given as input to an off-the-shelf unsu-
pervised clustering algorithm. This algorithm divides the
targets into k clusters. Subsequently the method described
in subsection 4.2 is used on each such cluster to find the lo-
cation and orientation of the camera to cover targets in this
cluster.

4.2 Step 2: Covering targets in one cluster
Before delving into details of finding the location and ori-

entation of the single camera allocated to each cluster, it is
helpful to look at its input domain

Problem Space: An arbitrary co-planar set of targets
is distributed in a fashion that falls somewhere between the
following two extreme and degenerate cases: (1) All targets
reside on one line. (2) Targets are evenly distributed in a
circle. Now, let us consider a set of targets with a constel-
lation that is somewhere between the two described above.
We call the smallest (in the sense of area) ellipse containing
all the targets in this set as ξopt with parameters a and b.

We now assume that targets’ locations are randomly drawn
from a 2D uniform distribution over this ellipse. Without
loss of generality, we also assume that the average point
coincides with the origin, and that the ellipse’s major and
minor axes are aligned with horizontal and vertical axis re-
spectively, as shown in Figure 3.

4.2.1 Intuition on optimal camera direction:
Problem: Find the radial sector, with minimum possible

radius R, its location and orientation to contain an ellipse
originating at (0, 0) with parameters a and b.

Solution: The two points P 1
1 and P 2

2 indicated in Figure
3 are both local optima. This can be seen easily by trying
to deviate the radial sectors originating at these points, and
directed at the major and minor axis respectively, either in
location or direction, and observe that either will result in
part of the ellipse being left uncovered.

For a given camera with sectoral coverage and a maximum
AOV of θ, depending on the relationship between a, b, AOV,
and Rmax, the following two camera configurations may be
used to cover all targets: Place the center of a circular sector
of angle θ on the (1) major, and (2) minor, axis of ξopt, such
that the upper and lower boundaries are tangent to it. If
the resulting location of the sector vertex is within 0 and
Rmax to all targets, this sector can cover them all. It can be
shown that the maximum distance between the camera and
the farthest possible target, d1

max and d2
max for the first and

second configuration are as follows:

d1
max = a+

√
a2 +

b2

tan2(θ/2)
(1)

d2
max = b+

√
b2 +

a2

tan2(θ/2)

If both d1
max ≤ Rmax and d2

max ≤ Rmax, either method
could be used. Otherwise, method i with dimax ≤ Rmax

will be selected. Herein, the tie is broken in favor of the
first configuration. The camera configuration decision for
degenerate cases (1) and (2) are obtained using a = b and
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Figure 3: Finding camera location for a set of targets

b = 0 respectively. Note that for a = b, all camera directions
are also equally suitable.

Procedure for approximating a and b: Assume a
given set of targets Λ with targets Tk, k ∈ {1, .., N}, and
cameras with coverage range Rmax and AOV = θ. We find
lines L∗1 and L∗2 for set Λ as follows. L∗1 is the line best
describing the target points using the Mean Square Error
(MSE) criterion. This line may also be found using Princi-
pal Component Analysis (PCA) [12] and finding the eigen
vector, umax, corresponding to the largest eigen value, λmax.
We denote the line perpendicular to L∗1 by L∗2. Since there
are a maximum of two eigen values in a 2D plane, this line
corresponds to the other eigen value, λmin. We denote the
standard deviation of target locations projected on L∗1 and
L∗2 by σ1 and σ1 respectively. Next, we interpret λmax

λmin
≈ a

b
.

We set a := 2σ1 and find b = 2σ1 × λ2
λ1

.
Plugging the values of a and b obtained from the above

procedure in equation 1, we decide between L∗1 and L∗2 for
the camera orientation. We denote the decided camera ori-
entation by L∗.

4.2.2 Simple Cover-Set Coverage Method (SCSC)
Assume a given set of targets Λ with targets Tk, k ∈
{1, .., N}, and cameras with coverage range Rmax and AOV
= θ. We denote the slope of line L∗, obtained in 4.2.1, rela-
tive to the x-axis by α. In our proposed method, SCSC, the
location of the camera is obtained as shown in Figure 4 and
is explained as follows.

(i) Through each point Tk, we pass two lines: (1) line Lk1
making angle α+ θ/2 with respect to the x-axis, (2) line Lk2
making angle α− θ/2 with respect to the x-axis.

(ii) We select the outermost line in the resulting grid,
i.e. we pick the lines where all target points reside only on
one side of them. There will be 4 such lines: (1) Lmin

1 =
minLk1 , ∀k ∈ {1, .., N}, (2) Lmax

1 = maxLk1 , ∀k ∈ {1, .., N},
(3) Lmin

2 = minLk2 , ∀k ∈ {1, .., N}, and (4) Lmax
2 = minLk2 , ∀k ∈

{1, .., N}. (iii) Two intersection points P2 = Lmax
1 × Lmin

2

and P4 = Lmin
1 × Lmax

2 both meet the AOV requirements.
Between them, we select the one that covers most targets,
and break ties randomly. Note that for θ = π/2, points P1

and P3 also meet the AOV requirements. Also note that
this takes O(N) operations for N targets.
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Figure 4: SCSC method: Targets are the green
dots. The decided camera direction is α (the red
line). Two lines which make θ/2 (green lines) and
−θ/2 (blue lines) with the camera direction are
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Complexity of CF: The computational complexity of
this algorithm depends on the complexity of the clustering
algorithm. If, for instance, k-means clustering is used, which
is linear in both dimensions and number of targets [12], CF
will also be an O(N) method.

Remarks on Target Mobility:
Periodic or event-based invocations of the coverage algo-

rithms can be used to cover mobile targets. However, the
time it takes for recalculating the location and orientation of
the cameras, in addition to relocating and repositioning the
cameras, must be less than the time interval between con-
secutive invocations. This necessitates low-complexity and
fast coverage algorithms.

5. EVALUATION
In this section, we first present the evaluation we con-

ducted via simulation on Matlab. Afterwards, we share the
experience gained as a result of our preliminary experimen-
tal evaluation on our testbed using UAV quadcopter drones.

5.1 Simulation

5.1.1 Simulation Set-Up
We use MATLAB simulations to compare the performance

of our proposed algorithm against those of methods pre-
viously proposed in the literature. We generate 8 direc-
tional clusters of targets. In each of these clusters, the y-
coordinates of target locations are dispersed along the de-
fined cluster direction using a normal distribution with stan-
dard deviation σ. Low values of σ result in well-defined di-
rectional clusters, while large values of it have the opposite
effect, as depicted in Figure 5 for 50 targets. For each value
of σ, we generate 10 random scenarios in this manner and
average the acquired performance metrics over all scenarios.

We used two heuristic algorithms to compare our proposed
algorithm against. Both of these algorithms were selected
from a few proposed in [20] and were modified to solve tar-
get coverage instead of area coverage. The first one is greedy
search, which is the closest to optimal in terms of the number
of cameras it finds covering all targets, but has the highest

Parameter Range Nominal value
Dim 50m× 50m 50m× 50m
AOV ∈ {45◦ − 150◦} 90◦

Target count 50− 200 50
Rmax 6m− 20m 15m
σ 0.5− 4.5 1

Table 1: Range and nominal values for simulation
parameters

computational complexity. The second algorithm is dual-
sampling, which is the most computationally efficient algo-
rithm proposed in [20]. To the best of our knowledge, there
are no other heuristic algorithms that use similar assump-
tions and would allow us to compare our methods against.
Other heuristics to the area and target coverage make ad-
ditional assumptions about the location of cameras, and/or
location of targets, which makes it difficult to conduct a
meaningful comparison between those method and ours.

In the following, we explain how these two heuristics op-
erate. In greedy search, cameras are positioned and oriented
one at a time. The location and direction of each additional
camera is determined by calculating the rank of all possi-
ble pairs of camera location-direction. The rank of each
location-direction pair is calculated by the number of re-
maining targets it is able to cover. Hence, this algorithm
needs O(D2 2π

∆φ
N2 logN) calculations and O(D2 2π

∆φ
) stored

elements, where D, N and ∆φ are the dimensions of the
square-shaped area, the number of targets, and the pan step,
respectively. In dual-sampling, each time, one target is ran-
domly selected. Then the camera location is selected from
the area in the Rmax neighborhood of this target. After-
wards, the location and direction pair which has the highest
rank that can also cover the chosen target is picked. There-
fore, this algorithm needs O(R2

max
2π
∆φ
N2 logN) calculations

and O(R2
max

2π
∆φ

) stored elements.
Dual-sampling and greedy search require very similar num-

ber of cameras to cover all targets in all our scenarios, which
we attribute to the open square-shaped are of interest de-
fined with no walls or hallways. However, greedy search
consumes a lot more execution time due to its higher com-
plexity.In the figures displaying execution time throughout
this section, we exclude the greedy search results since its

values are very large ( D2

R2
max

times more than dual-sampling)

and including them would skew the scale of the figure and
mask the difference in the performance of other algorithms.

We apply two specific clustering algorithms as represen-
tatives of centroid and non-centroid based clustering algo-
rithms: kmeans, and kd-tree [12], and denote them by CF-
kmeans and CF-tree. We also denote the greedy and dual-
sampling methods by Gd and Dual-Smp respectively.

Parameters and Metrics: The parameter values are
summarized in Table 1. We consider the following metrics:
(1) Number of required cameras, and (2) Execution time.

5.1.2 Simulation Results
Impact of cluster dispersiveness: We vary the dis-

persiveness of directional clusters, depicted in Figure 5, by
changing the value of parameter σ, as described earlier in
this section. The performance of the different methods is
compared in Figure 6. From Figure 6(a), we notice that
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Figure 6: Comparison between camera placement
algorithms for different cluster dispersiveness levels

when clusters are less dispersed, i.e. σ is not large, the num-
ber of cameras obtained by CF-tree is very close to those
obtained via Dual-Smp and Gd. As the dispersiveness in-
creases, the clusters become less defined, and therefore the
underlying logic for our proposed SCSC method becomes
less effective. This causes CF-tree to perform worse as dis-
persiveness increases. We also notice that CF-tree requires
a fewer number of cameras compared to CF-kcam when σ
is small. This is because we set our clusters to be stretched
mainly in one direction, which makes centroid-based clus-
tering methods such as k-means less effective. On the con-
trary, kd-tree is capable of identifying non-circular shaped
clusters effectively. However, when σ is large and therefore
clusters are less defined, CF-kmeans performs better than
CF-tree. In terms of computational complexity, as can be
seen in Figure 6(b), both CF variants perform much better
than Dual-Smp and Gd.

Impact of target density: Figure 7 compares the per-
formance of the various methods for different number of tar-
gets (and hence density, since the area is fixed). From Figure
7(a), we notice that again the number of cameras required to
cover targets by CF-tree is very similar to those obtained by
Gd and Dual-Smp. We also observe that this measure con-
verges for all methods as the number of targets increases.
On the contrary, from Figure 7(b), we see that while the
execution time for CF-variants only slowly grows, it experi-
ences a large increase for Dual-Smp. This is in agreement
with the computational complexities calculated.

Impact of AOV: The performance of the algorithms
were compared for a number of different values for AOV:
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with different target densities
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(a) Camera Count vs. AOV
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Figure 8: Comparing camera placement algorithms
with different AOVs

45◦ (unzoomed webcam), 60◦ (vertical camera of Parrot
AR.Drone), 90◦ (frontal camera of Parrot AR Drone), 120
and 150 (fish-eyed lenses). Figure 8 depicts the results. As
expected, we notice from Figure 8(a) that the number of re-
quired cameras for all four algorithms drops (and converges)
for wider AOV values. Also, the execution time of the dif-
ferent algorithms decreases as can be seen in Figure 8(b).
Again, FC variants offer much smaller computational com-
plexity than Dual-Smp and Gd (Gd eliminated again for
easier comparison).

Impact of Rmax: We would like to make the following
note on the reasonable range of choices for Rmax before pre-
senting the result of its impact on the performance of the
different algorithms:

Note 1: For some range of values of Rmax the target cov-
erage problem may be trivially solved. Let us consider the
quantity covering-density for K cameras with range Rmax

and AOV = θ as defined in [16] as:

covering density =
K × πR2

max( θ
2π

)

D2

in which the nominator quantifies the direct sum of all
sub-areas covered by all cameras, and the denominator quan-
tifies the total surface area. As this quantity does not ac-
count for overlapping covered areas across cameras, it is a
conservative measure of coverage. Nevertheless, if this quan-
tity adds up to one, all the given area is covered, in which
case, the target coverage problem is trivial. For example,
assume that we are to cover a 50m×50m square area us-
ing cameras that have an AOV = π/2, and Rmax = 40m.
Positioning one camera at every corner of this square and
directing it according to the square’s diagonals towards the
center covers the whole area, and all the targets that are
contained in it.
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Figure 9: Comparing camera placement algorithms
with different coverage ranges

Considering the above note, we vary the value of Rmax be-
tween 6m and 20m, to ensure a nontrivial coverage problem.
Note that for a given camera type, this quantity also cap-
tures the quality images a specific application requires. The
results are shown in Figure 9. As expected, it can be seen in
Figure 9(a) that the number of required cameras decreases
(and converges) for all four algorithms when Rmax increased.
As seen in Figure 9(b), while the FC variants’ execution time
decreases as Rmax increases, D-Smp (and Gd whose result is
not shown to make easier comparison) exhibit second-order
polynomial increase in execution time.

Note 2: We can scale the Rmax and area dimensions
based on the application and the required camera cover-
age quality. For instance, the simulation results presented
for our 50m ×50m simulation area and Rmax = 5 may be
down-converted to a 10m ×10m area at Rmax = 1m, or
up-converted to a 100m ×100m area and Rmax = 10.

5.2 Preliminary Experimental Evaluation
Testbed: We show the feasibility of the proposed algo-

rithm using simple experiments. In our experiments, micro
Unmanned Air Vehicles (UAVs), mounted with a front cam-
era, move around the area of interest to cover toy targets
within an indoor setup. Figure 10 shows the different com-
ponents of the testbed.

The testbed setup covers an area of 1.5m by 2.25m. To
localize the different moving objects in the area of inter-
est (i.e. targets and UAVs), each object is labelled with a
certain color and an Axis 213 PTZ Network Camera was
mounted at 3.8m height to locate the different objects. The
locations of all objects are reported to the central node, a
laptop, to calculate the placement strategy of the UAVs.

We use the Parrot AR Drone 2.0 quadcopters as UAVs.
These drones are equipped with two cameras: a front 720p
camera with a 93◦ lens and a vertical QVGA camera with
a 64◦ lens. Those drones are controlled through an external
computer through WiFi, and are also equipped with an on
board ARM Cortex A8 processor with 1 Gbit RAM that
runs a Linux 2.6.32 Busybox. The main purpose of the on
board computing power is to report the state of the drone
and collected video to the external computer and provide
assistance on basic manoeuvres. The testbed is shown in
Figure 11. More details on this testbed may be found in [32].

Experiment: Our deployed scenario includes one drone
and four targets, of which two are static, and the other two
are remote controlled mobile cars. The algorithm runs on
a laptop, and the drone is commanded to adjust its loca-
tion and orientation periodically (maximum of 3 times per
second) to maximize coverage. Initially, all four targets are

Targets/Drones Localization

Camera Placement Algorithm

(X,Y) coordinates of targets and drones

Drones Controller

Updated drones locations

Images of area of interest

Central Node

WiFi Card

Drone commands Drone feedback

Master 
camera

Target

Target
Target

Figure 10: The experimental testbed architecture

Figure 11: A UAV coverage scenario using the AR
Parrot Drones. The view from the UAV is in the
top left corner of each snapshot, and the view from
the master camera is in the bottom left corner of
each snapshot. The general view is that taken from
our camera of the whole environment. Targets that
become visible by either UAV cameras, or master
camera are circled in red.

static, and the drone, located in an arbitrary spot, takes off,
moves to the location prescribed by the CF algorithm, ad-
justs its direction and consequently covers all targets. Then
the two remote-controlled cars move one at a time, and the
drone adjusts its location/direction to maximize coverage.
In the demo, we change the locations of the cars such that
one camera is sufficient to cover all four targets.

6. CONCLUSION AND FUTURE WORK
In this paper, we studied the problem of finding the num-

ber of cameras, their location, and orientation such that
all targets are covered. We proposed a computationally
efficient heuristic algorithm based on iteratively clustering
targets, which finds the location/direction of a single cam-
era to cover targets in each individual cluster. We used
simulation to evaluate and compare our proposed method’s
performance against those of existing work. Our simula-
tion results showed that, when targets are naturally spread
in directional clusters, the number of cameras our method
finds are very close to those obtained by near-optimal meth-
ods, while requiring much less computational complexity.
To show the feasibility of our algorithm, we also deployed
a simple testbed and used our proposed algorithm to au-



tonomously position and orient Parrot AR.Drone MAVs, in
real-time, to cover a set of static and mobile targets.

In the future, we will address occlusions, distributed heuris-
tics, and path planning for mobile cameras relocation consid-
ering energy consumption. A more comprehensive testbed
will also be used with more complex scenarios.
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