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Abstract—WLAN Device-free passive (DfP) indoor local-
ization is an emerging technology enabling the localization
of entities that do not carry any devices nor participate
actively in the localization process using the already installed
wireless infrastructure. This technology is useful for a variety
of applications such as intrusion detection, smart homes and
border protection.

We present the design, implementation and evaluation of
RASID, a DfP system for human motion detection. RASID
combines different modules for statistical anomaly detection
while adapting to changes in the environment to provide ac-
curate, robust, and low-overhead detection of human activities
using standard WiFi hardware. Evaluation of the system in
two different testbeds shows that it can achieve an accurate
detection capability in both environments with an F-measure
of at least 0.93. In addition, the high accuracy and low overhead
performance are robust to changes in the environment as
compared to the current state of the art DfP detection systems.

Keywords-Anomaly detection, device-free passive localiza-
tion, motion detection systems, robust device-free localization.

I. INTRODUCTION

The increasing need for context-aware information and

the rapid advancements in communication networks have

motivated significant research effort in the area of location-

based services. This effort resulted in the development of

many location determination systems, including the GPS

system [1], ultrasonic-based systems [2], infrared-based (IR)

systems [3], and radio frequency-based (RF) systems [4].

Moreover, motion detection systems, that aim at detecting

the motion of an entity carrying a device, were also devel-

oped [5]–[13]. These systems require the tracked entity to

carry a device that participates in the localization process.

Thus, we refer to them as device-based systems.

Motivated by the wide use of wireless LANs for in-

door communication, we recently introduced the concept

of device-free passive DfP localization [14] which enables

the detection and tracking of entities that do not carry

any devices nor participate in the localization process. This

concept depends on the fact that the presence and motion of

entities in an RF environment affects the RF signal strength,

especially when dealing with the 2.4 GHz band which

is used in different IEEE standards such as 802.11b and

802.11g (WiFi). Different DfP algorithms were proposed for
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Figure 1. RASID system architecture.

detection [14], [15] and tracking [14], [16]–[18] of entities

in indoor environments. Our focus in this paper is on the

detection problem.

In particular, we address the problem of designing a low-

overhead, accurate, and robust DfP motion detection system.

We introduce the RASID system that provides a software

only solution on top of the already installed wireless net-

works enabling a wide set of applications including intrusion

detection, border protection, and smart homes. As a typical

DfP system, RASID consists of signal transmitters, such as

access points (APs), signal receivers or monitoring points

(MPs), such as standard laptops1, and an application server

which collects and processes information about the received

signals from each MP. The application server contains the

main system modules responsible for performing the detec-

tion function (Figure 1).

Our research on RASID is motivated by several factors:

First, the technologies that can be used to provide the desired

detection capability (e.g. cameras [19], IR sensors, radio

tomographic imaging [20], pressure sensors [21], etc) share

the requirement of installing special hardware. In addition,

cameras and IR sensors are limited to line-of-sight vision

1Note that it is also possible to use the access points themselves as
monitoring points.



and thus the cost of covering an area might be prohibitive.

Moreover, regular cameras fail to work in the dark or in the

presence of smoke. RASID avoids these drawbacks by using

the already installed wireless infrastructure without installing

any special hardware. It also makes use of the fact that RF

waves do not require LOS for propagation.

From another perspective, the previously proposed

WLAN DfP detection techniques [14], [15] provide good

performance under strong assumptions, which limit their

application domain. For example, they are not robust to

changes in the environment. That is they do not adapt to

changes in the environment, e.g. humidity and temperature

changes. Moreover, their parameters need to be changed

as the deployment area changes. In addition, the technique

proposed in [15] requires the construction of a human mo-

tion profile which leads to high overhead inside large-scale

environments. The cost of this technique may be prohibitive,

as it requires access to all areas of a building which might

include restricted or private areas and requires several hours

of calibration. Finally, all techniques were either evaluated

in controlled environments, e.g. [14], or in small-scale real

environments, e.g. [15].

In order to achieve its objectives, RASID uses a statistical

anomaly detection technique to detect motion inside indoor

environments [22]. RASID only constructs a non-parametric

profile for the signal strength readings received at the MPs

when there is no human activity during a short training

phase of only two minutes, leading to minimal deployment

overhead. RASID also employs techniques for continuously

updating its silence profile to adapt to the environment

changes. The system also applies a decision refinement pro-

cedure in order to reduce the false alarms due to the signal

noise. Furthermore, RASID also provides an interface by

which the regions of activity can be identified. We evaluate

the system in two different large-scale environments rich in

multi-path and compare RASID to the state-of-the-art DfP

detection techniques [14], [15]. Our results show that RASID

achieves its goals of high accuracy in both environments

with minimal deployment overhead. In addition, it is robust

to changes in the environment.

In summary, the contributions of this paper are four-fold:

• We present the architecture and implementation of

RASID: a system that provides robust device-free mo-

tion detection along with techniques for adapting to

environment changes and handling the wireless signal

noise.

• We analyze different signal strength features that can

be used for detection and identify the most promising

one.

• We evaluate the system in two different large-scale

real testbeds and compare it to the state-of-the-art DfP

detection techniques.

• We present a comparison of parametric and non-

parametric approaches for system operation.

The rest of this paper is organized as follows: Section

II reviews related work. Section III presents the RASID

system architecture and operation. Section IV presents the

experimental evaluation of RASID and a comparison with

other techniques. Section V compares the non-parametric

approach used in the system to a parametric analytical model

for the system operation. Finally, Section VI concludes the

paper and discusses future work.

II. RELATED WORK

Motion Detection in device-based systems has been an

active field of research. Several approaches have been pro-

posed to detect the motion of an entity carrying a device

either with the use of special hardware like accelerometers

or motion sensors [6], [7], or by using the existing network

infrastructures like wireless networks [9], [11] and GSM

[12].

From the device-free perspective, multiple technologies

can be used to provide the desired capabilities including:

ultra-wide band radar [23], computer vision [19], physical

contact-based systems [21] and radio tomographic imag-

ing [20]. Other technologies include the usage of wireless

sensors for tracking transceiver-free objects [24]. Those

technologies share the requirement of installing special hard-

ware to handle the device-free functionalities. In addition,

cameras and IR sensors are limited to line-of-sight vision

and thus they require a high cost deployment to cover all

site regions. Regular cameras may also fail to work in the

absence of light or the presence of smoke. Ultra-wide band

radar based techniques also suffer from high complexity.

Moreover, some techniques can require high density to

provide full coverage like radio tomographic imaging and

physical contact-based systems using pressure sensors.

WLAN device-free passive systems aim to avoid the

above drawbacks by using the already available wireless

infrastructure. The concept of device-free passive detection

and tracking using WLANs was first proposed in [14] with

a large number of applications including intrusion detection,

border protection [25], smart homes, and traffic estimation

[26]. Techniques for DfP detection [14], [15] and tracking

[14], [16]–[18], [27] were introduced. The proposed tech-

niques for the detection capability are either based on time-

series analysis, like the moving average and moving variance

techniques proposed in [14], or based on classification using

the maximum likelihood estimation [15]. These techniques

are not robust to changes in the environment. In addition,

some techniques require the construction of a human motion

profile which is a high overhead process for large-scale

environments [15]. Moreover, these techniques were either

evaluated in controlled environments, e.g. [14], or in small-

scale real environments, e.g. [15].

RASID addresses these drawbacks using statistical

anomaly detection techniques along with other techniques

devised for adapting to environment changes and refining



its decision. This enables RASID to achieve low deployment

overhead, high accuracy, and high robustness.

III. THE RASID SYSTEM

In this section, we give the details of the RASID system.

We start by an overview of the system architecture followed

by the details of the system modules.

A. System Overview

Figure 1 gives an overview of the system architecture.

The modules of the proposed system are implemented in the

application server that collects samples from the monitoring

points and processes them. The system works in two phases:

1) A short offline phase, during which the system studies

the signal strength values when no human is present inside

the area of interest to construct what we call a “normal

or silence profile” for each stream. The profiles of all

streams are constructed concurrently in that short phase. 2)

A monitoring phase, in which the system collects readings

from the monitoring points and decides whether there is

human activity (anomalous behavior) or not based on the

information gathered in the offline phase. It also updates the

stored normal profile so that it can adapt to environment

changes. Finally, a decision refinement procedure is applied

to further enhance the accuracy.

The Normal Profile Construction Module constructs the

initial silence profiles based on a short, typically two min-

utes, training sample taken when there is no human motion

present in the area of interest. (Section III-C)

The Basic Detection Module examines each stream read-

ings in the monitoring phase and decides whether there is

an anomalous behavior or not. This operation is applied to

each stream independently. It also assigns an anomaly score

to each stream to express the intensity of the anomalous

behavior. (Section III-E)

The Normal Profile Update Module updates the normal

profiles constructed in the offline phase in order to adapt to

changes in the environment. (Section III-F)

The Decision Refinement Module applies heuristic meth-

ods to refine the decision generated by the basic detection

module to reduce the false alarm rates. (Section III-G)

The Region Tracking Interface provides an interface that

visualizes the output of the above modules. This interface

enables the user to identify the detected events and provides

the regions of the moving entities. (Section III-H)

We start by giving the mathematical notations followed

by the details of the different modules.

B. Mathematical Notations

Let k be the number of streams, which is equal to the

number of APs times the number of MPs. Let sj,t denote

the received signal strength (RSS) reading for a stream j
that is received at a time instant t. The system studies the

Figure 2. Illustration of the normal profile construction.

behavior of a sliding window Wj,t of size l that ends at time

t, i.e. Wj,t = [sj,t−l+1, sj,t−l+2, ..., sj,t].

In order to study the behavior of the sliding windows, each

sliding window Wj,t is mapped to a single feature or value

xj,t through a function g. For example, if the mean is the

selected feature, then g(Wj,t) =
1
l

∑l
i=1 sj,t−l+i. Two types

of features can be considered: measures of central tendency,

such as the mean, and measures of dispersion or variation,

such as the variance.

C. Normal Profile Construction

The purpose of the Normal Profile Construction Module

is to construct a normal profile, capturing the received

signal strength characteristics when there is no human in

the area of interest. This is used later by other modules to

detect anomalies. This module runs in the offline phase. It

extracts the feature values from the sliding windows over

the collected data and estimates its distribution. The density

function of the feature values observed is estimated using

non-parametric kernel density estimation2. This is done for

each stream independently. Figure 2 illustrates the operation.

Formally, for a stream j, given a set of n sliding windows,

each of length l samples, each window Wj,i is mapped to a

value xj,i, where xj,i = g(Wj,i). Assume fj is the density

function representing the distribution of the observed xj,i’s,

then given a random sample xj,1, xj,2, ..., xj,n, the estimated

density function f̂j is given by [28]:

f̂j(x) =
1

nhj

n
∑

i=1

V

(

x− xj,i

hj

)

(1)

where hj is the bandwidth and V is the kernel function.

The choice of the kernel function is not significant for

the results of the approximation [29]. Hence, we choose

the Epanechnikov kernel as it is bounded and efficient to

integrate:

2In Section V, we present the motivation for using a non-parametric ap-
proach by providing a performance comparison with a parametric modeling
of the system operation.



V (q) =

{

3
4 (1− q2), if |q| ≤ 1

0, otherwise
(2)

Also, we used Scott’s rule to estimate the optimal band-

width [29]:

h∗

j = 2.345σ̂jn
−0.2 (3)

where σ̂j is an estimate for the standard deviation for the

xj,i’s.

After estimating the density function for the feature

values extracted from the sliding windows, critical bounds

are selected so that if the feature values observed in the

monitoring state exceed those bounds, the observed values

are considered anomalous. Given a significance parameter

α and assuming F̂j is the CDF of distribution shown in

Equation 1, if the feature is a measure of central tendency,

which can deviate to the left or the right, then lower and

upper bounds will be calculated such that the lower bound is

F̂j
−1

(α/2) and the upper bound is F̂j
−1

(1−α/2). However,

if the feature is a measure of dispersion, which can only

deviate in the positive (or right) direction, then an upper

bound is only needed and is equal to F̂j
−1

(1−α). In the next

subsection, we study different features that can be selected.

D. Feature Selection

As the system requires an offline phase before operation,

to learn the behavior of the signal readings in the normal

state, the selected feature for system operation should be

resistant to possible environmental changes that may affect

the stored data, e.g. temporal variations3. In addition, the

selected feature should also be sensitive to the human motion

to enhance the detection accuracy.

In this section, we compare two categories of features:

central tendency measures and dispersion measures. The

goal of this study is to identify the category that will be

more promising for the system operation. For this study, we

consider the mean as a central tendency measure, and the

standard deviation as a measure of dispersion. We use the

standard deviation, rather than the variance, as the variance

is a squared measure, while the mean is not.

1) Sensitivity to human activity: The selected feature

should be sensitive to human activity. To compare the

two features, we use the Euclidean distance between the

normalized histograms representing the silence and motion

states. The Euclidean distance is defined as the square root of

the sum of the squared distance between each corresponding

histogram bin. The histograms are constructed over a two-

minute period for each state using Testbed 1, which is

discussed later in Section IV. Figure 3 shows the comparison

versus different window sizes. The figure shows that the

3Our experiments show that the changes in the traffic load on the network
do not affect the signal strength. Therefore, temporal variations here refer
to changes in the physical environment that affect the signal strength.
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Figure 3. Distance between the features’ normalized histograms for silence
and motion states.
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Figure 4. Illustrating the motion effect on wireless signals of two different
streams.

distance between the histograms of the standard deviation

is larger than the distance between the histograms of the

mean. This indicates that the standard deviation feature is

more discriminant of the human motion than the mean

feature. This conclusion can be justified by observing the

motion effect on typical wireless signals. Figure 4 provides

a visualization of the raw signal strength for two different

streams during silence and human motion periods. The figure

shows that in the case of human motion, the fluctuations can

be up or down around the normal/silence signal level, which

leads to a limited effect on the mean as compared to the

standard deviation.

2) Resistivity to temporal variations: As the proposed

system requires a learning phase before operation, it is

necessary to reduce the temporal variation effect on the

stored profiles. To compare the two features, we use two

different silence data sets collected two weeks apart. Fig-

ure 5 shows the results. The more similar the histograms,

the more resistive the feature is to the introduced variations.

The figure shows that the standard deviation feature is less

affected by temporal variations. This is due to the fact that

the standard deviation is a relative measure as it is calculated

with respect to the mean, whereas the mean itself provides

an absolute value that is more susceptible to be affected by

changes in the conditions.

From this study, we conclude that the measures of dis-

persion, e.g. the standard deviation or variance, are more
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Figure 5. Distance between the features’ normalized histograms for the
two week-separated silence data.

suitable for our proposed system. For the rest of the paper,

we use the sample variance as the selected feature.

E. Basic Detection Procedures

The Basic Detection Module runs during the monitoring

phase. The purpose of this module is to detect signal strength

anomalies, i.e. human presence, based on the normal profiles

constructed during the offline phase. In particular, for a

window of samples Wj,t for stream j at a given time instant

t, the module calculates the corresponding feature value xj,t,

i.e. the sample variance. A stream j is considered anomalous

if xj,t is above a critical bound uj . Given a significance

parameter α and assuming F̂j is the CDF of distribution

shown in Equation 1, the upper bound uj will be equal to

the 100(1− α)th percentile of the CDF function, such that

uj = F̂j
−1

(1− α).
The Basic Detection Module declares a global alarm

when any stream is anomalous. This approach can lead to

many false positives due to signal strength outliers. This

is enhanced later by the Decision Refinement Module. The

Basic Detection Module also calculates an anomaly score

aj,t for each stream j to keep track of the significance of any

anomalous activity. For a given window, Wj,t, the anomaly

score, aj,t, can be calculated as: aj,t =
xj,t

uj
where xj,t is

the sample variance of the window and uj is the critical

value. This means that a detected anomaly will have a score

greater than one and a silence window will have a score of

less than one. The anomaly score is used by the Normal

Profile Update and Decision Refinement modules to further

enhance the accuracy.

In summary, the basic detection procedure requires two

parameters: the window size l and the significance α.

Analysis of both parameters is presented in Section IV-C.

F. Capturing Changes in the Environment: The Normal

Profile Update Module

Due to the dynamic changes in the environment, the stored

profiles may not capture the real normal state. Therefore, the

systems needs to update the stored profiles during the online

phase. The technique we employ for handling the update

process is based on continuously updating the estimated

density in Equation 1, by adding xj,t’s, that do not have

high anomaly scores in average to it. In particular, during

the monitoring phase, the system groups the consecutive

xj,t’s in disjoint groups of size lupdate. The group that has

an average anomaly score of less than one is added to the

normal profile. The parameter lupdate can be tuned to provide

the desired performance. We quantify the effect of the lupdate

parameter in detail in Section IV-C2.

Adding new data to the normal profiles implies the need

to give more weight to the recent data. Therefore, Equation

1 is modified to:

f̂j(x) =
1

hj

n
∑

i=1

wiV

(

x− xj,i

hj

)

(4)

where
n
∑

i=1

wi = 1. We choose linear weights such that

wi =
i

n(n+1)/2 (n is constant). We found that exponential

weights do not provide good performance due to the high

discrimination introduced between older and newer data.

G. The Decision Refinement Module

Typical wireless environments are noisy. This fact can

cause many false alarms if the system generates alarms

just based on a single stream. The goal of the Decision

Refinement Module is to reduce the false alarm rate by

fusing different streams.

Since the Basic Detection Module assigns an anomaly

score to each detected event that expresses its significance,

this can be leveraged to enhance the detection performance.

The Decision Refinement Module studies the behavior of a

global anomaly score at that is calculated by summing the

individual anomaly scores for each stream. If a noticeable

change in at occurs, based on a threshold, while at least one

stream is anomalous, this implies the start of an anomalous

behavior. The module makes use of the history of the

activity state inside the environment through the usage of

exponential smoothing to monitor the at in order to avoid

the noisy samples, hence reducing the false alarm rate. It

also implicitly makes use of the locality of human motion,

meaning that the human will continue to affect the same

stream and/or other streams near it, causing the sum of

anomaly scores smoothed curve to have higher values during

the motion period (Figure 6).

H. Region Tracking User Interface Module

The system provides an interface that provides informa-

tion about the probable regions of the detected event. This

is based on visualizing the anomaly degree of each stream

enabling the user to identify the regions that probably have

moving entities inside. This is done by coloring each pixel

on the map according to its distance from each stream

endpoints and according to the anomaly score of each
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Figure 6. The behavior of the sum of anomaly scores for Testbed 1.

(a) Silence State (b) Two Persons Moving

Figure 7. The output of the Region Tracking Interface.

stream. Figure 7 displays the output of this interface when

two persons are moving inside a typical site, showing the

true locations of the two persons.

IV. EXPERIMENTAL EVALUATION

In this section, we study the effect of the different

parameters on the performance of the RASID system and

compare it to the previous WLAN DfP detection techniques

[14], [15].

A. Experimental Testbeds and Data Collection

We collected two sets of data to evaluate the system

performance, each in a different testbed. The first testbed is

an office of approximately 2000 ft2. The second experiment

was conducted in a two-floor home building where each

floor was approximately 1500 ft2. Both tesbeds were covered

with typical furniture. For both testbeds, we used four

Cisco Aironet 1130AG series access points and used three

DELL laptops equipped with D-Link AirPlus G+ DWL-

650+ Wireless NICs as MPs. The access points were operat-

ing on different channels. The experiments were conducted

in typical IEEE 802.11b environments. Figures 8 and 9 show

the layouts of both experiments.

For the data collection, sets of normal (silence) state

readings and continuous motion readings were collected for

each testbed. A total of about one hour and 15 minutes of

data was collected for each testbed with a sampling rate of

one sample per second using the active scanning technique

[4]. For Testbed 1, this includes three motion sets, while

MP 1

MP 3

AP 3

MP 2

AP 2

AP 4

AP 1

15.6m

12.3m

Figure 8. Testbed 1 layout and motion pattern.

(a) Floor 1 (b) Floor 2

Figure 9. Testbed 2 layout and motion patterns.

for Testbed 2, this includes two motion sets. A motion set

covers the entire area of the testbed, as shown in figures 8

and 9, and represents the motion of a single person walking

normally around the site without any stops.

For system evaluation, extreme conditions were em-

ployed: The training period is chosen to be only the first

two minutes of the entire data collected with the absence

of human motion. In addition, only one person moved in

the area of interest. More people in the area of interest

will lead to higher variance [30] and hence better detection.

Therefore, the reported results present a lower bound on the

performance of the RASID system.

B. Evaluation Metrics

We used three metrics to analyze the detection perfor-

mance: the false positive (FP) rate, the false negative (FN)

rate and the F-measure. The false positive rate refers to the

probability that the system generates an alarm while there is

no human motion in the area of interest. The false negative

rate refers to the probability that the system fails to detect

the human motion in any place in the area. We also use the

F-measure, which provides a single value to measure the

effectiveness of the detection system [31].

Since each anomalous sample may not be detected simul-

taneously, we also studied the detection latency, i.e. how

much time the system needs to associate an anomalous



Table I
SYSTEM PERFORMANCE UNDER THE SAME PARAMETERS

(l = 5, α = 0.01, lUPDATE = 15) FOR THE TWO TESTBEDS.
ENHANCEMENT IS WITH RESPECT TO THE F-MEASURE OF THE BASIC

DETECTION MODULE.

Basic Normal Profile Decision-Refine-

Detection Update ment Module

Module Module (RASID Perf.)

Testbed 1

FN Rate 0.0672 0.0876 0.0468

FP Rate 0.2158 0.1176 0.0378

F-measure 0.8683 0.8989 0.9574

Enhancement - 3.52% 10.26%

Testbed 2

FN Rate 0.2368 0.2069 0.0966

FP Rate 0.1059 0.0903 0.0372

F-measure 0.8167 0.8422 0.9311

Enhancement - 3.1% 14%

sample with a detected event. The overall 90th detection

latency percentile in both testbeds was found to be less than

one second. Due to space constraints, we report the accuracy

results only.

C. System Performance

Table I summarizes the system performance for both

testbeds using the same parameters for all modules. The

table also shows the enhancement introduced by each mod-

ule to show the robustness of the techniques.

1) Basic Detection Module: As mentioned earlier, this

module requires the selection of the sliding window size l
and the significance α. Figure 10 illustrates the effect of

these parameters applied to Testbed 1. Similar performance

has been observed for Testbed 2. The figure shows that

choosing a too short window size will make the system less

sensitive to human motion. On the other hand, choosing a

very large window size will introduce a very high FP rate.

For the significance parameter, as α decreases, the FP rate

decreases and the FN rate slightly increases. This means

that increasing the significance will result in less system

sensitivity. Therefore, to balance the different performance

metrics, we choose l = 5 and α = 0.01.

Table I shows that Testbed 2 has a higher FN rate than

Testbed 1 in the Basic Detection Module. This is due to the

larger testbed area (i.e. less coverage) and the time needed

to move between the floors in Testbed 2. This is significantly

enhanced by the processing performed by the Normal Profile

Update and Decision Refinement modules. It can be noted

also that the FP rate in Testbed 1 is relatively high. This

is because the two-minute training period is not enough to

sustain accurate detection for one hour of accurate operation

inside the office environment. This highlights the need for

the Normal Profile Update Module.

2) Normal Profile Update Module: The Normal Profile

Update Module requires the selection of the update window

size lupdate. Choosing a too small lupdate will make the system

very sensitive to noisy readings causing a high FP rate. On

the other hand, a very large lupdate will make the system

less sensitive to human motion causing a higher FN rate.

0
10

20
30

40 0

0.02

0.04

0.06

0

0.1

0.2

0.3

0.4

Significance

Window Size

F
N

 r
a

te

(a) False negative rate

0

20

40

0

0.02

0.04

0.06
0

0.2

0.4

0.6

0.8

1

Window SizeSignificance

F
P

 r
a

te

(b) False positive rate

Figure 10. Analysis of the Basic Detection Module parameters for Testbed
1.
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Figure 11. Effect of the update window size parameter (lupdate).

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

Sample Variance (dBm
2
)

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

 

 
True Normal Profile

Starting Profile

Updated Profile

Figure 12. Comparison between the starting profile, updated profile and
the true profile for the sample variance of the AP4-MP3 stream at the
end of Experiment 1. As shown, the updated and true profiles are almost
congruent.

Figure 11 illustrates these effects of the update window size

on the system performance for Testbed 1 when l = 5 and

α = 0.01. The figure shows that an update window size

between 10 and 20 is sufficient to reduce the high FP rate

without causing much increase to the FN Rate. Thus, we

choose lupdate = 15. The results are shown in Table I.

The table shows that there is about 50% reduction in the

FP rate in the first testbed, but this lead to a slight growth

in the FN rate. For Testbed 2, the results of both the FN

and the FP rates were enhanced due to adapting to the

environment. Overall, the F-measure was enhanced by 3 to

4% with respect to the Basic Detection Module performance.

This enhancement can be explained by the observation

that the Normal Profile Update Module reduces the effect of

the temporal variations between the environment true normal



profiles and the stored normal profiles by updating them.

We verified that by applying the two-sample Kolmogorov-

Smirnov test to the distributions of the updated profiles and

the distributions of the true normal state. The test accepted

the hypotheses that those distributions came from the same

underlying distribution at a significance of 0.05. Figure 12

provides an example comparing the starting, updated and

true sample variance profiles at the end of Experiment 1.

3) Decision Refinement Module: This module fuses the

data from all streams. Figure 6 displays the sum of anomaly

scores curve for the data collected for Testbed 1. To reduce

the FP rate, the curve is exponentially smoothed with a

smoothing coefficient of 0.04. A large increment in the

smoothed curve, by more than 20% to 25% from the normal

level, implies a period of human motion. Our experiments

show that deviations from these parameters values will not

lead to significant degradation in the results. The figure

shows that the motion periods are clearly distinguishable

from the silence state. Table I shows that this module can

lead to up to 10 to 14% enhancement in the F-measure for

both testbeds with respect to the Basic Detection Module.

It is important to note that this module also reduced the FN

rate, as some of the previously undetected events are now

detected because this technique makes use of the history of

the state of the activity as described earlier.

D. Comparison with Previous Techniques

In this section, we compare the performance of RASID

to the previous techniques devised for WLAN DfP detec-

tion: the moving average (MA) and moving variance (MV)

techniques proposed in [14], and the maximum likelihood

estimation (MLE) technique proposed in [15].

1) Comparison Aspects:

• Static accuracy: accuracy when the system is evaluated

with the same profiles it was trained on (if any). This

is to test the best attainable accuracy.

• Profiles’ robustness: that is how consistent the perfor-

mance of the system is when the tested profiles are

different from the trained ones, for example due to

temporal changes in the environment. For this case, the

testing data set is collected two weeks after the data

sets used for training.

• Overhead: the effort needed to deploy the system.

2) Comparison Results: Table II shows the comparison

results in two cases.

In terms of the static accuracy, the results show that the

F-measure of the RASID system is better than other systems

in Testbed 1 and is slightly lower than the MLE technique

in Testbed 2. Compared to the MA and MV techniques, the

RASID system provides high accuracy due to the techniques

it uses to enhance the performance. On the other hand,

the MLE technique achieves slightly higher accuracy in

Testbed 2 as it stores a motion profile, which requires much

higher overhead than the RASID system.

Table II
PERFORMANCE COMPARISON WITH PREVIOUS DfP DETECTION

TECHNIQUES.

Results with static profiles

MA MV MLE RASID

Testbed 1

FN Rate 0.1446 0.1426 0.0363 0.0468

FP Rate 0.1385 0.104 0.1547 0.0378

F-measure 0.858 0.8743 0.9099 0.9574

Testbed 2

FN Rate 0.0759 0.308 0.0372 0.0966

FP Rate 0.7412 0.1478 0.0774 0.0372

F-measure 0.6935 0.7522 0.9438 0.9311

Overhead No overhead Minimal Worst Minimal

Results with testing profiles separated two weeks

from the training profiles.

MA MV MLE RASID

Testbed 1

FN Rate 0.2165 0.319 0.1653 0.0472

FP Rate 0.0711 0.1561 0.952 0.0782

F-measure 0.8449 0.7414 0.5991 0.9383

Testbed 2

FN Rate 0.2641 0.4152 0.1203 0.0931

FP Rate 0.3602 0.0513 0.831 0.0722

F-measure 0.7022 0.7149 0.6491 0.9165

Overhead No overhead Minimal Worst Minimal

In terms of profiles’ robustness, the MA technique does

not store any profiles. Therefore, its overall performance is

low but almost the same as the profiles change. On the other

hand, the robustness of the MLE technique is the least as it

uses the mean signal strength values as the features used for

classification. Therefore, after two weeks, the distribution of

the signal strength does not follow the learned one. This

is why the FP rate for the MLE technique is too high

due to the shift that occurred in the signal distributions.

It can also be noted that RASID performance in the two

cases was the best because RASID uses the variance for its

operation (dispersion feature) and employs techniques for

adapting to changes in the environment and for enhancing

the performance. This is why RASID performance is better

than the MV in general, although the MV uses the same

feature as RASID.

In terms of overhead, the MA technique has the minimum

overhead as it does not need any learning phase. The MV

and RASID deployment need to construct normal profiles by

collecting samples for two minutes when the human is not

present. On the other hand, the MLE technique has the worst

overhead as it constructs motion profile at each location in

the area of interest in addition to the normal profile.

In summary, although the static detection accuracy of

RASID is as accurate as the MLE technique, the MLE

technique has significantly higher overhead than RASID

because of its motion profile requirements. In addition,

RASID is the most robust technique to temporal changes

in the training profiles and significantly outperforms the

remaining techniques.

V. COMPARISON WITH A PARAMETRIC APPROACH

In this section, we compare the performance of the

system’s non-parametric approach to an analytical model

that models the sample variance parametrically. The results

of this model can help validate the results of our parameter



analysis in the previous section and can also motivate the

usage of the non-parametric density estimation. The next

evaluation will be based on the results of the Basic Detection

Module only, so as to evaluate the two approaches without

the enhancements. First, we describe the analytical model,

then we present the results of the comparison.

A. The parametric model

The sample variance can be modeled parametrically given

some conditions. According to Cochran’s Theorem [32],

the sample variance of l independent normally distributed

random samples follows a chi-square distribution with l− 1

degrees of freedom such that
(l−1)s2

σ2 ∼ χ2
l−1, where σ2

is the population variance. According to [33], the signal

strength readings (in dBm) distributions for a stream j
can be assumed to follow a normal distribution. Given

that assumption, a parametric model can be devised for

the system when the sample variance is used. Given a

significance α and a window size l, the upper bound for

the sample variance observed during the monitoring phase

is χ2
l−1,1−α. However, [33] also stated that the normality

assumption may not hold in some cases. In addition, the

signal strength readings may not be independent [34]. Thus,

we believe that the non-parametric model described before

will provide better performance than the parametric model.

This will be verified in the following subsection.

B. Analysis Results

First, to check how close the parametric model is to

the actual system, we compare the critical upper bounds

obtained by both methods. For example, in Figure 13 we

compare the critical sample variance values in both cases

for the stream AP4-MP3 from Experiment 1, when the

population variance is assumed to be 2.02 dBm2 which is

an experimental estimate for the population variance of that

stream. The figure shows that the parametric model and

the actual system critical values follow the same trends.

However the difference between the curves suggests that the

real case does not exactly follow the assumed parametric

model. In addition, the effects of Basic Detection Mod-

ule parameters can be inferred from the parametric model

curves. As the window size parameter l increases, the critical

variance value decreases which results in increased system

sensitivity (i.e. higher FP rate and lower FN rate). Also, as

the significance parameter α increases, the critical variance

value decreases which also results in increased sensitivity.

This is consistent with the analysis presented in Figure 10.

The next point is to study how the usage of the paramet-

ric model instead of non-parametric estimation can affect

the system performance. As the distribution of the sample

variance depends on the population variance, we analyze its

effect. Figure 14 shows the effect of the population variance

on the performance of the Basic Detection Module when

the parametric model is used for Experiment 1. From the
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Figure 13. Comparison of the critical variance values of the parametric
model and the RASID system model (non-parametric approach).
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Figure 14. The performance of the Basic Detection Module when the
parametric model is used versus the population variance, given l = 5

and α = 0.01. The best population variance configuration provides an
F-measure of 0.843 compared to 0.8683 that was obtained using the non-
parametric estimation.

figure, we can conclude that the best performance achieved

in terms of the F-measure (0.843) is less than the F-measure

obtained using non-parametric estimation (0.8683).

To conclude, the parametric model leads to lower perfor-

mance compared to the non-parametric estimation because

the assumptions that the signal strength values are indepen-

dent and follow a normal distribution may not hold. Also,

the parametric model requires the selection of an accurate

population variance. This cannot be done accurately without

training for long time periods. Therefore, we conclude that

RASID approach of constructing non-parametric profiles in

a short offline phase and updating them in the online phase

does provide a better option.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the RASID system, a sys-

tem that enables device-free passive motion detection us-

ing the already installed wireless networks. RASID uses

non-parametric statistical anomaly detection techniques to

provide the detection capability. The RASID system also

employs profile update techniques to capture changes in

the environment and to enhance the detection accuracy. The

system was evaluated in two different real environments.

Using the same parameters for the two testbeds, the system

provided an accurate detection capability reaching an F-

measure of at least 0.93 in both testbeds. The performance



of the RASID system was compared to the previously

introduced techniques for WLAN DfP detection. The results

showed that the RASID system outperformed the state-

of-the-art techniques in terms of robustness and accuracy.

In addition, we showed that the non-parametric approach

employed by RASID has significant advantages over a para-

metric approach for the system operation.

Currently, we are expanding RASID in several directions:

One direction is to integrate RASID’s detection capability

with DfP tracking systems while considering larger testbeds.

Another direction is to study possible sources of noise in

typical wireless environments, e.g. other devices inside or

outside the area of interest, and how to reduce their effect.

We are also studying how the detected entity’s character-

istics, e.g. size, shape and motion pattern, can affect the

system performance. Moreover, the site configuration, i.e.

the positions of the APs and MPs, can also be studied in

order to optimize the system performance.
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