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We present RASID: a system capable of detecting passive human motion using the already

installed indoor wireless infrastructure. RASID applies a statistical anomaly detection tech-

nique to detect motion inside indoor environments by monitoring the changes in the wireless

signal strength. The system also adapts to the environment changes and applies decision

refinement procedures for enhancing the detection accuracy. Our results show that RASID

can achieve an accurate detection capability, reaching 6% miss detection rate and 8% false

alarm rate in a typical environment.

I. Introduction

Motivated by the wide use of wireless LANs for in-

door communication, we introduced the concept of

device-free passive DfP localization [1] which enables

the localization of entities that do not carry any de-

vices nor participate in the localization process. This

concept depends on the fact that the presence and mo-

tion of entities in an RF environment affect the RF

signals emitted by the wireless signal transmitters and

received at the wireless signal receivers.

In this work, we present our research on RASID,

a system that aims to provide a low-overhead, accu-

rate and robust DfP motion detection in large-scale

environments. RASID uses statistical anomaly detec-

tion techniques to detect motion inside indoor envi-

ronments. It only constructs a profile, for the signal

strength readings received at the MPs when there is

no human activity during a short training phase lead-

ing to minimal deployment overhead. The system also

employs a technique for adapting to the environment

changes and for refining the detection decision. More-

over, it provides an interface through which the re-

gions of the detected events are visualized.

RASID aims to provide a software-only solution on

top of the already installed wireless networks and can

have multiple applications. These include intrusion

detection, sensor-less sensing, low cost surveillance,

and smart buildings.

Our research on RASID is motivated by several fac-

tors: First, the technologies that can be used to pro-

vide the desired detection capability (e.g. cameras, IR

sensors, radio tomographic imaging, pressure sensors,

etc) share the requirement of installing special hard-

ware. In addition, cameras and IR sensors are limited
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Figure 1: RASID system architecture.

to line-of-sight vision and thus the cost of covering all

site regions might be prohibitive. Moreover, regular

cameras can fail to work in the dark or in the presence

of smoke and they can cause privacy concerns. RASID

tries to avoid such drawbacks by using the already in-

stalled wireless infrastructure without installing any

special hardware. It also makes use of the fact that RF

waves do not require LOS.

From another perspective, the previously proposed

techniques for WLAN DfP (e.g. [1, 2]) were found to

provide good performance under strong assumptions,

which may limit their application domain. For exam-

ple, those techniques are not robust to changes in the

environment. That is, they do not adapt to changes

like furniture movement and/or humidity and temper-

ature changes. In addition, using the maximum likeli-

hood technique proposed in [2] requires the construc-

tion of a human motion profile that requires significant

time for calibration when dealing with large-scale en-

vironments. This also can require access to private



areas of a building, which makes the cost of this tech-

nique prohibitive.

RASID aims to avoid the above drawbacks by pro-

viding a robust technique that does not require high

deployment overhead and has a mechanism to adapt

to the environment changes. In Section II, we present

RASID architecture and discuss its operation. Then,

the evaluation of the system is presented in Section III

followed by conclusions and future work.

II. RASID System Architecture and
Operation

Figure 1 gives an overview of the system architec-

ture. The system consists of signal transmitters, such

as access points (APs), signal receivers or monitor-

ing points (MPs), such as standard laptops, and an

application server which collects and processes infor-

mation about the received signals from each MP. The

modules of the RASID system are implemented in the

application server.

The system works in two phases: 1) An offline

phase, during which the system studies the signal

strength values when no human is present inside the

area of interest to construct what we call a normal or

silence profile for each stream. This profile stores in-

formation about the distribution of the sample vari-

ance of the signal strength received during the silence

period. Note that the system stores only information

about the silence state and does not require storing any

motion profiles. This leads to minimal overhead. 2) A

monitoring phase, in which the system collects read-

ings from the monitoring points and decides whether

there is human activity or not based on the informa-

tion gathered in the offline phase. It also updates the

stored normal profile so that it can adapt to environ-

ment changes. Finally, a decision refinement proce-

dure is applied to further enhance the accuracy.

The Normal Profile Construction Module con-

structs the initial silence profiles based on a short of-

fline phase. It extracts the variance values from a

moving sliding window over the training data and esti-

mates its distribution (Figure 2). The density function

of the variance is estimated using kernel density esti-

mation. This is done for each stream independently.

The Basic Detection Module examines each stream

in the monitoring phase and calculates the variance of

a moving sliding window over its readings, and then

decides whether there is an anomalous behavior or

not, based on the variance profile constructed in the

offline phase. It also calculates an anomaly score for

each stream, to express the significance of the gener-

Figure 2: Illustration of the normal profile construc-

tion.
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Figure 3: A sample output of the Region Tracking In-

terface.

ated alarms.

The Normal Profile Update Module runs in the

monitoring phase. This module updates the normal

profiles constructed in the offline phase in order to

adapt to changes in the environment. This is done by

updating the variance profiles using groups of read-

ings that have low anomaly scores in average.

The Decision Refinement Module aims at enhanc-

ing the detection accuracy by fusing the states of all

streams in the monitoring phase. It studies the behav-

ior of a global anomaly score calculated by summing

the individual anomaly scores assigned by the basic

detection module for each stream. This module uses

exponential smoothing to monitor the global anomaly

score in order to reduce the noisy samples (Figure 5).

The Region Tracking Interface provides an inter-

face that visualizes the output of the above modules.

This interface enables the user to identify the regions

of the detected events (Figure 3).

III. Evaluation

III.A. Testbed Setup

We conducted our experiment in a typical IEEE

802.11b environment in an office of approximately

2000 ft2 (Figure 4). The testbed was covered with typ-

ical furniture. We used four Cisco Aironet 1130AG
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Figure 4: Testbed layout and motion pattern.

series access points and three DELL laptops equipped

with D-Link AirPlus G+ DWL-650+ Wireless NICs.

For the data collection, sets of normal (silence) state

readings and continuous motion readings were col-

lected. A total of about one hour and 15 minutes of

data was collected. This included three motion sets,

each covers the entire area of the testbed, as shown in

Figure 4. The motion sets were collected while there

is only one person moving inside the area. The sys-

tem was trained with the first two minutes of the data

collected with the absence of human presence.

III.B. Results

We used two metrics to analyze the detection perfor-

mance: the false positive (FP) rate and the false neg-

ative (FN) rate. The FP rate refers to the probability

that the system generates an alarm while there is no

human motion inside the area, whereas the FN rate

refers to the probability that the system fails to detect

the human motion anywhere in the area. We combine

both metrics using the F-measure.

Table 1 summarizes the system performance for the

experiment. It also shows the enhancement introduced

by each module with respect to the F-measure. As

shown, using the basic detection module only resulted

in a high FP rate, since the two-minutes training pe-

riod is not sufficient for one hour of operation. The

profile update module reduced the high FP rate by

about 40%, but resulted in some increase in the FN

rate. The decision refinement module reduced both FP

and FN rates, since it resists noise and makes use of

the history of the state of activity inside the area. Fig-

ure 5 shows how the decision refinement procedure

works.

Decision

Basic Detection Normal Profile Refinement

Module Update Module Module

FN Rate 0.0611 0.1120 0.06

FP Rate 0.3841 0.2270 0.08

F-measure 0.8083 0.8397 0.9227

Enhancement - 3.9% 9.8%

Table 1: System performance results.
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Figure 5: The behavior of the sum of anomaly scores

used by the decision refinement module.

IV. Conclusion and Future Work

In this work, we presented the preliminary results of

the RASID system that aims at indoor device-free pas-

sive motion detection using the already installed wire-

less infrastructure. RASID uses statistical anomaly de-

tection techniques to provide the detection capability.

Also, it employs a profile update technique to capture

changes in the environment and to refine the detection

decision. The system was evaluated in a typical office

environment achieving a detection capability of 6%

miss detection rate and 8% false alarm rate. For future

work, we are currently studying noise reduction tech-

niques in order to reduce the system false alarm rate

without affecting the detection capability. In addition,

we are devising an analytical model for the system op-

eration. Moreover, factors like: site configuration (i.e.

the positions of the APs and MPs) and effect of differ-

ent hardware are to be studied.
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