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Abstract—WLAN Device-free Passive (DfP) localization is an
emerging technology that uses the widely deployed WiFi networks
for detecting and localizing human presence within indoor
environments. This paper presents an accurate and low-overhead
technique for detecting human presence based on non-parametric
statistical anomaly detection. This technique constructs profiles
capturing the signal strength characteristics when no human is
present within the area of interest and uses these profiles to
identify any anomalies in the signal strength due to human
motion activity. To adapt to changes in the environment, the
constructed profiles are regularly updated by signal strength
readings with low anomaly probability. Exponential smoothing
is then used to reduce the effect of noisy readings in order
to enhance the detection accuracy. Our work proved to be
more robust and accurate than other DfP detection techniques,
achieving a high detection accuracy of 4.7% miss detection rate
and 3.8% false alarm rate, while requiring minimal deployment
overhead.

Index Terms—Anomaly detection, device-free passive localiza-
tion, motion detection, robust device-free localization.

I. INTRODUCTION

The increasing need for context-aware information and the

rapid advancements in communication networks have moti-

vated significant research effort in the area of location-based

services. This effort resulted in the development of many

location determination systems, including the GPS system [1],

infrared-based (IR) systems [2], and radio frequency-based

(RF) [3] systems. Moreover, motion detection systems, that

aim at detecting the motion of an entity carrying a device,

were also developed [4]–[8]. These systems require the tracked

entity to carry a device that participates in the localization

process. Thus, we refer to them as device-based systems.

Recently, we introduced the concept of WLAN Device-free

Passive (DfP) localization [9], which takes advantage of the

widely deployed WiFi networks to achieve its objectives. This

concept was shown to be applicable for both detection and

tracking of human entities [9]–[14]. DfP techniques neither re-

quire the tracked entity to carry a device nor participate in the

localization process. This concept depends on the fact that the

presence and motion of human entities in an RF environment

affect the RF signal strength, especially when dealing with

the 2.4 GHz band which is used in different IEEE standards

such as 802.11b and 802.11g. DfP systems provide software

only solutions that could be deployed on any available WiFi

network, enabling a large set of applications including smart

homes, intrusion detection, and border protection.

A typical WLAN DfP system (Figure 1) consists of signal

transmitters, such as access points (APs), signal receivers or

monitoring points (MPs), such as standard laptops, and an

application server which collects and processes information

about the received signals from each MP. The application

server uses the collected information to perform the detection

or tracking functions and initiates actions as needed.

WLAN DfP systems are mainly motivated by the observa-

tion that the current technologies which can provide device-

free tracking and detection (e.g. cameras [15], IR sensors,

radio tomographic imaging [16], pressure sensors [17], etc)

share the requirement of installing special hardware. The

cost of such requirement might be prohibitive for homes and

small businesses especially in some cases like cameras and

IR sensors, whose functionality is limited to line-of-sight, and

may require a high density installation to cover all site areas.

In addition, regular cameras may fail to work in the dark or in

the presence of smoke, and they can cause privacy concerns.

On the other hand, RF signal propagation does not require line-

of-sight for operation, and does not cause privacy concerns.

In this paper, we introduce a novel low-overhead WLAN

DfP technique for detecting human presence in real wireless

environments. This technique uses non-parametric statistical

anomaly detection for its operation. It constructs profiles for

the signal strength only when there is no human activity inside

the area of interest in a short training phase, and then uses

those profiles for human motion detection. We also introduce

mechanisms for enhancing the detection accuracy by ensuring

the robustness against the changes in the environment (e.g.

humidity and temperature changes) that may cause deviations

in the signal strength distributions. Furthermore, we present a

mechanism for reducing the negative impact of noisy readings

on the accuracy.

The main motivation for our technique is the strong assump-

tions made by previously proposed DfP detection techniques

[9], [10]. For example, our previous work in [10] requires

the construction of a human motion profile which assumes

having access to all parts of the area of interest and also

requires several hours of calibration even for a relatively small

setup. Also, the techniques in [9], [10] were evaluated in



Fig. 1. An example of a typical device-free passive system deployed in a
typical environment.

controlled environments or in small-scale real environments.

Finally, earlier DfP detection techniques do not provide any

mechanisms to adapt to changes in the environment, and their

performance may degrade in real environments due to the

dynamic changes in the signal strength distributions.

This paper is organized as follows: The details of the

statistical anomaly detection technique is presented in Section

II. Then, in in Section III, we present a mechanism for

updating the constructed profiles in order to achieve robustness

by adapting to changes in the environment. Additionally, due

to noisy signal readings, false alarms of human presence

can occur, therefore we present a technique to reduce the

false alarm rate in Section IV. In Section V, we evaluate

the proposed technique in a large-scale real environment rich

in multi-path and show how our work outperforms the state-

of-the-art DfP detection techniques. Finally, we conclude the

paper and discuss future work directions in Section VI.

II. ANOMALY-BASED DfP MOTION DETECTION

In this section, we introduce our statistical anomaly-based

DfP motion detection technique. Our proposed approach works

in two phases:

1) Training or offline Phase: a short period of few minutes

during which a silence or normal profile is constructed

for each stream. The silence profiles capture the behavior

of the signal strength readings when the area of interest

has no human presence within a short window of time

leading to minimal deployment overhead. We give the

details of that phase in Section II-B

2) Monitoring or online Phase: In this phase, the signal

readings received at the monitoring points are compared

against the constructed silence profiles to detect any

anomalous behavior (human presence). We give the

details of that phase in Section II-C

We start by laying out the mathematical framework for the

approach then give the details of the two phases.

A. Mathematical Notations

Let sj,t denote the received signal strength reading for a

stream j at a time instant t. Our technique considers the
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(a) Sample mean silence profile
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(b) Sample mean silence profile two
weeks later
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(c) Sample variance silence profile
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(d) Sample variance silence profile
two weeks later

Fig. 2. Comparison between the sample mean and sample variance silence
profiles showing the robustness of the latter. Subfigures (a) and (b) show two-
week separated sample mean silence profiles for a wireless stream, while
subfigures (c) and (d) show two-week separated sample variance silence
profiles for the same wireless stream.

behavior of a sliding window Wj,t of size l that ends at

time t, i.e. Wj,t = [sj,t−l+1, sj,t−l+2, ..., sj,t]. Each sliding

window Wj,t is mapped to a single feature or value xj,t.

The feature we choose here is the sample variance. Thus,

xj,t =
∑l

i=1
(sj,t−l+i−s̄j,t)

2

l−1 , where s̄j,t is the mean signal

strength of Wj,t
1. From another perspective, the variance is

a relative measure as it measures difference about the mean.

This means that sample variance profiles will be less affected

by the temporal variation shifts that occur in the signal strength

histograms, as compared to sample mean profiles (Figure 2).

This implies that the sample variance profiles will be more

robust than sample mean profiles.

B. Capturing Signal Behavior in Silence

During the offline phase, a normal profile is constructed

for each stream independently. The normal profiles comprise

the signal strength variance characteristics during the silence

period, i.e. when there is no human in the area of interest. In

order to construct a normal profile for a given wireless stream,

our technique extracts the sample variance values of a sliding

window over the collected normal signal strength readings for

that stream. Then, the distribution of the extracted variance

values is estimated using non-parametric kernel density esti-

mation. These estimated densities are used during the online

phase as a reference for statistical anomaly detection.

Formally, for a stream j, given a set of n sliding windows,

each of length l samples, each window Wj,i is mapped to

a value xj,i as mentioned earlier. Assume fj is the density

function representing the distribution of the observed xj,i’s.

Then, given a random sample xj,1, xj,2, ..., xj,n, the estimated

1In [18], we show experimentally that the sample variance as a dispersion
measure, can be better used to identify the signal strength changes due to
human activity.



density function f̂j is given by [19]:

f̂j(x) =
1

nhj

n
∑

i=1

K

(

x− xj,i

hj

)

(1)

where hj is the bandwidth and K is the kernel function. The

choice of the kernel function is not significant for the results of

the approximation [20]. Thus, we chose the the Epanechnikov

kernel as it is bounded and efficient to integrate, and used

Scott’s rule to estimate the optimal bandwidth [20].

C. Anomalies Detection: Human Presence Detection

We now consider the online phase during which the anoma-

lies in the signal strength are detected. Anomalies in the signal

strength occur due to signal fluctuations caused by people

movement.The normal profiles, constructed during the offline

phase, are used as a reference to detect those anomalies. In

particular, for a sliding window Wj,t for a stream j at a given

time instant t, the sample variance value xj,t is calculated. A

stream j is considered anomalous if xj,t is above a critical

bound uj . Given a significance parameter α and assuming F̂j

is the CDF of distribution shown in Equation 1, the upper

bound uj will be equal to the 100(1− α)th percentile of the

CDF function, such that uj = F̂j
−1

(1− α).
To quantify the significance of any anomalous activity, an

anomaly score aj,t is calculated for each stream j. For a given

window, Wj,t, the anomaly score, aj,t, can be calculated as:

aj,t =
xj,t

uj
where xj,t is the sample variance of the current

sliding window and uj is the critical value. This means that

a detected anomalous sliding window will have an anomaly

score greater than one and a silence sliding window will have

an anomaly score of less than one. This anomaly score will

be used in the next two sections for enhancing the detection

accuracy and ensuring the robustness of the used normal

profiles.

It should be noted that the parameters window size (l) and

significance (α) need to be tweaked to control the accuracy

of the statistical anomaly-based motion detection technique.

Analysis of these two parameters is presented in Section V-C.

In its current form, the performance of the proposed

anomaly-based technique can get affected by noisy readings

and by the dynamic changes in signal strength distributions.

Therefore, in the next two sections, we present enhancements

to our technique. Mainly, we provide a mechanism for updat-

ing the constructed silence profiles automatically during the

monitoring phase to increase the robustness of those profiles.

In addition, we present a technique for reducing the negative

effect of the noisy readings on the detection accuracy.

III. ADAPTING TO CHANGES IN THE ENVIRONMENT

Figure 2 shows that the sample variance profiles will be

more robust than the sample mean profiles. However, the

constructed sample variance profiles are still subject to signal

strength variations due to the dynamic changes in the wireless

environments and hence, the stored profiles may not capture

the true silence state. Therefore, the silence profiles captured

during the offline phase need to be updated continuously

during the online phase in order to adapt to any possible

changes in the signal strength distributions.

The technique we propose for updating the normal profiles

in the online phase is based on the automatic update of the

estimated density in Equation 1. This is handled by adding

xj,t’s that do not have high anomaly scores in average to

the samples used for estimating the density. In particular,

during the online phase, we group the consecutive xj,t’s in

disjoint groups of size lupdate. The group that has an average

anomaly score of less than one is added to the normal profile.

The parameter lupdate can be tuned to provide the desired

performance. We discuss the effect of the lupdate parameter

in detail in Section V-C2.

In order to give higher priority to the new data added to the

normal profiles, we give higher weight to the recent samples

in Equation 1 instead of assuming equal weights. Therefore,

Equation 1 is modified to:

f̂j(x) =
1

hj

n
∑

i=1

wiK

(

x− xj,i

hj

)

(2)

where
n
∑

i=1

wi = 1. We choose linear weights such that wi =

i
n(n+1)/2 (n is constant). We found that exponential weights do

not provide good performance due to the high discrimination

introduced between older and newer data.

IV. HANDLING NOISY READINGS

Due to the noisy nature of wireless environments, anomaly

detection techniques operating on wireless signals can generate

false alarms if the alarms were only generated due to the

changes in a single stream. Therefore, a mechanism is needed

to reduce those false alarms in order to enhance the detection

performance. The technique we employ for the reduction of

false alarms is based on fusing the information acquired from

each wireless stream.

Since we quantify each event by an anomaly score, these

scores can be used to enhance the detection performance.

To achieve that, a global anomaly score at is calculated by

summing the individual anomaly scores for each stream. If a

noticeable change in at occurs, based on a threshold, while

at least one stream is anomalous, this implies the start of an

anomalous behavior. Exponential smoothing is used to reduce

the noisy samples effect on the at curve, and hence reduce

the false alarm rate. This technique makes use of the history

of the activity state inside the environment through the usage

of exponential smoothing. It also makes use of the locality

of human motion, meaning that the human will continue to

affect the same stream and/or other streams near it, causing

the sum of anomaly scores smoothed curve to have higher

values during the motion period.

V. EXPERIMENTAL EVALUATION

In this section, we present the evaluation of our proposed

technique showing that it satisfies the design goals of being

low-overhead, accurate, and robust against the changes in the
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Fig. 3. Testbed layout and motion pattern.

environment. Also, a rationale for choosing values for the

window size l, the significance α and the update window size

lupdate is presented. Finally, a comparison with previous WLAN

DfP detection [9], [10] techniques is provided to illustrate the

superiority of our proposed technique.

A. Experimental Testbed and Data Collection

The experiments were conducted in an office of approx-

imately 2000 ft2 covered with typical furniture (Figure 3).

Two sets of data were collected two weeks apart to evaluate

the robustness of the proposed technique. We used four Cisco

Aironet 1130AG series access points and three DELL laptops

equipped with D-Link AirPlus G+ DWL-650+ Wireless NICs.

For the data collection, sets of normal (silence) state read-

ings and continuous human motion readings were collected. A

total of about one hour and 15 minutes of data was collected;

this includes three motion sets each lasting approximately

three minutes. A motion set covers the entire area of the

testbed, as shown by the red line in Figure 3, and represents the

motion of a single person moving around the site continuously

without any stops. For the evaluation, the training period was

chosen to be the first two minutes only of the entire data

collected during the absence of human motion. In addition,

only one person moved in the area of interest.

B. Evaluation Metrics

We use two main metrics to analyze the detection capability:

the false positive (FP) rate and the false negative (FN) rate.

The false positive rate is the rate at which false alarms are

generated while there is no human motion in the area of

interest. The false negative rate refers to the probability of miss

detection (i.e. when the technique fails to detect human motion

in any place in the area). We also use the F-measure later

when we compare the performance of the proposed technique

to other DfP techniques.

It should be noted that each anomalous event may not be

detected simultaneously after its occurrence. Therefore, we
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Fig. 4. The Anomaly-based technique performance showing the effect of
the enhancements

also study the detection latency, i.e. how much time is needed

to associate an anomalous sample with a detected event. The

overall 90th detection latency was found to be one second at

most. Due to space constraints, we report the accuracy results

only.

C. Detection Performance

Figure 4 summarizes the performance of the proposed

technique. It also illustrates how the enhancements discussed

in Sections III and IV enhance the overall accuracy. In the

following sections, we analyze the effect of the parameters on

the detection performance.

1) Anomaly-Based Motion Detection: As mentioned earlier,

the sliding window size l and the significance α need to

be tweaked to get the desired detection performance. Figure

5 illustrates the effect of these parameters on the detection

performance. The figure shows that choosing a too short

window size will make the detection technique less sensitive

to human motion. On the other hand, choosing a very large

window size will introduce a very high FP rate. For the

significance parameter, as α decreases, the FP rate decreases

and the FN rate slightly increases. This means that increasing

the significance will result in less sensitivity. Therefore, to

balance the different performance metrics, we choose l = 5
and α = 0.01. From Figure 4, it can be noted that the

FP rate of the basic anomaly-based technique without the

enhancements is high. This is mainly because the two-minute

training period is not sufficient for handling one hour of

operation due to the possible changes in the environment,

therefore the profile adaptation mechanism is needed along

with noise handling.

2) Capturing Changes in the Environment: The update

window size lupdate is the key parameter in adapting to changes

in the environment. Choosing a too small lupdate will result into

high sensitivity to noisy readings causing a high FP rate. On

the other hand, a very large lupdate will make the technique less

sensitive to human motion causing a higher FN rate. Figure 6

illustrates the effect of the update window size on the detection

performance when l = 5 and α = 0.01. The figure shows that

an update window size between 10 and 20 is sufficient to
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reduce the high FP rate without causing much increase to the

FN Rate. Thus, we choose lupdate = 15.

3) Noisy Readings Handling: By fusing the statuses of all

streams, the false alarm rate can be reduced by generating

alarms only when there is a high probability that there is

human motion inside the area. The technique described earlier

in Section IV mainly studies a smoothed curve of the sum of

anomaly scores in order to avoid any sudden noise that may oc-

cur in the streams. Figure 7 displays the sum of anomaly scores

curve for the data of our experiment. To reduce the FP rate, the

curve is exponentially smoothed with a smoothing coefficient

of 0.04. To declare an alarm, a large increment in the smoothed
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Fig. 7. Curves representing the values of the sum of anomaly scores before
and after exponential smoothing throughout the experiment.
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curve, by more than 20% to 25% from the normal curve level,

is required. According to our experience with the technique,

deviations from these parameters values will not lead to sig-

nificant degradation in the detection performance. The figure

shows that the motion periods are clearly distinguishable from

the silence state. Figure 4 shows the enhancement achieved by

adding the noise handling mechanism. It should be noted that

this technique was also able to reduce the FN rate, as some

of the previously undetected events could be detected now

because this technique makes use of the history of the state

of the activity inside the area of interest as described earlier.

In summary, our experimental evaluations showed that it

is clearly necessary to include the profile update and noise

handling mechanisms to achieve high accuracy in real envi-

ronments. Figure 4 shows that the proposed technique, with its

enhancements, can achieve a high detection accuracy reaching

4.7% miss detection rate and 3.8% false alarm rate.

D. Comparison with DfP Detection Techniques

In this section, we compare the performance of our sta-

tistical anomaly-based technique to the previous techniques

devised for WLAN DfP detection: the moving average and

moving variance techniques proposed in [9], and the maximum

likelihood estimation (MLE) technique proposed in [10]. We

consider two cases for the comparison: The first is when the



techniques are tested with the same data sets that were used to

train them (if any). This is to test the best attainable accuracy.

The second case is when the testing data set is collected two

weeks after the data sets used for training. This is to test the

robustness of each technique to changes in the environment.

Figure 8 shows the comparison results in terms of the F-

measure in both cases.

According to the figure, our proposed technique is better

than all the other techniques in both cases. Furthermore, the

enhancement is more clear in the second case. This is due to

the robustness of the profiles that our technique uses, as it uses

the sample variance for its operation in addition to employing

techniques for adapting these profiles to the changes in the

environment. The figure also shows that the performance of

the MLE technique is the least in the second case as it uses

the sample mean signal strength values as the feature used

for classification. Therefore, after two weeks, the distribution

of the signal strength is expected to deviate from the learned

one. This is consistent with the profiles comparison provided

before in Figure 2. It also should be noted that the moving

average technique does not store any profiles. Therefore, its

F-measure is relatively low but almost the same in both cases.

From the overhead perspective, the moving average tech-

nique has no profile construction overhead as it does not

require any learning phase. Also, the moving variance and our

anomaly-based techniques require the construction of normal

profiles by collecting samples for two minutes when the human

is not present. On the other hand, the maximum likelihood

classification technique has the worst overhead as it requires

the construction of a motion profile at each location in the

area of interest in addition to the normal profile.

Therefore, in terms of both the detection accuracy and the

deployment overhead, the proposed anomaly-based detection

technique does provide a better practical technique than the

other DfP techniques, since it has the highest accuracy and

robustness, and requires minimal overhead.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel technique for device-free

passive human motion detection using the already installed

wireless networks. A non-parametric statistical anomaly de-

tection techniques was employed to provide the detection

capability. We also presented a technique for adapting to

changes in the environment by capturing changes that occur

in signal strength readings over time, hence enhancing the

detection accuracy and improving its robustness. The proposed

technique was evaluated in a real environment providing an

accurate detection capability reaching a 4.7% miss detection

rate and a 3.8% false alarm rate. The performance of the

proposed technique was also compared to the previously

introduced techniques for WLAN DfP detection. The results

showed that our work outperformed the previous techniques

in terms of robustness and accuracy.

For future work, we plan to analyze the effect of using more

signal features other than the signal variance. We also plan

to compare the performance of our non-parametric statistical

anomaly detection technique to a parametric one. Another

direction is to integrate our work with the DfP tracking

systems to enhance their tracking accuracy.
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