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Abstract—The basic MAC mechanisms in IEEE 802.11 (WiFi)
have remained largely unchanged for over 20 years. In this paper,
we argue that the prevalence of WiFi makes it almost impossible
to improve its performance through changes that require modi-
fying hardware, firmware, or drivers. New applications, however,
continue to exert novel performance demands. We suggest that
changes should be developed as augmentation-only solutions
through above-driver, kernel-level software modifications. An
augmentation-only solution needs to maintain inter-operability
and afford transparency in performance to existing WiFi devices,
as well as enable minimum overhead upgradability. Our goal is
to demonstrate the feasibility of MAC augmentation according to
these principles. To this end, we leverage soft scheduling, where
nodes are asked for a best-effort attempt to adhere to a given
schedule. We allow the soft scheduler to coexist with and work
at a different time scale from WiFi’s Distributed Coordination
Function (DCF); allowing it to reduce the time nodes spend
contending for the medium while allowing DCF to handle only
missed schedule slots and schedule divergence. We present a
new Soft Token Passing Protocol (STPP) as an instance of this
family of Soft Scheduling Protocols. We then show how STPP
can be made part of a MAC protocol with specific performance
improvement goals by developing the Wireless Low-Latency
Local Links (WL4) system. We evaluate WL4 on a five node
microbenchmark and quantify the system’s overhead on network
throughput and latency. We show that soft scheduling, via STPP,
enables WL4 to adhere to our augmentation principles while
improving the latency within the system.

I. INTRODUCTION

The basic medium access coordination mechanisms in IEEE
802.11 (WiFi) have remained largely unchanged for over 20
years, with the exception of IEEE 802.11e [1] introduced in
2002 to incorporate QoS (compare IEEE 802.11 standards [2]
circa 1997 and [3] circa 2016). During that time, a plethora of
protocols were proposed to improve on WiFi’s performance
with little to no adoption. With billions of devices that are
expected to be compatible and interoperable [4], [5], [6], [7],
there is no clear path to the adoption of significant changes to
WiFi or of a new standard.

New applications, however, continue to exert novel de-
mands for low latency and elaborate bandwidth allocation.
Augmented-reality (AR) SDK for Android [8] and iOS [9]
are promoting multiplayer gaming over WiFi, which requires
very low latency communication between players (e.g., [10]).
Additionally, mirroring applications have been widely used
and require seamless interaction between the mobile or hand

held device and TV (e.g., [11]). Finally, the emerging trend
of edge computing systems that leverage idle compute cycles
on clusters of mobile and IoT devices within close proximity
acts as another motivating domain [12], [13], [14], [15].

In this paper, we argue that the prevalence and ubiquity of
WiFi makes it almost impossible to improve WiFi performance
through changes that require modifying hardware, firmware,
or drivers. We suggest that rather than thinking about such
dramatic changes to the protocol, changes should be developed
as augmentation-only solutions through above-driver, kernel-
level software modifications that are independent of hardware.
Such an approach makes improvements as simple as a kernel
patch rather than a hardware upgrade, thus, increasing the
chance of wide adoption.

We identify the following design principles for an
augmentation-only solution:

1) it should be backward compatible and interoperable with
standard WiFi devices,

2) it should improve on WiFi’s performance for certain
applications and should not degrade its performance for
traditional use cases,

3) the existence of augmented devices should be transpar-
ent to non-augmented devices and should not harm their
performance, and

4) existing WiFi devices should be upgradable with mini-
mal overhead through above-driver, OS patches.

Our goal in this paper is to demonstrate the feasibility of
MAC augmentation according to the four principles above.
To this end, and with these principles in mind, let us consider
the question of how one can augment WiFi’s medium access
control (MAC) protocol. WiFi relies on the Distributed Co-
ordination Function (DCF) or Enhanced Distributed Channel
Access (EDCA) for medium access coordination1 [16]. DCF
employs a CSMA/CA algorithm with exponential backoff.
EDCA provides four priority levels through four DCFs each
with different backoff parameters. DCF and EDCA are both
based on random access techniques which are known to intro-
duce significant and sometimes unpredictable latencies [17].

A meaningful augmentation to WiFi cannot simply tweak
random access mechanisms or their parameters, and needs

1Point Coordination Function (PCF) is a third algorithm but it is rarely
implemented or used.



to enable additional mechanisms with significantly different
features and capabilities. For MAC protocols, scheduled op-
eration has long been considered as an alternative to ran-
dom access [16], [18]. The main challenge is that typical
scheduled transmission mechanisms require strict coordination
and scheduling. As such, they are designed as replacements
for WiFi. We, therefore, consider how one might augment
WiFi with some form of less strict scheduled operation while
preserving the augmentation principles highlighted above.

Throughout the long history of research and development
on WiFi, several systems and protocols have attempted such
augmentation (Section II). However, we find that they remain
unrealistic and prohibitive due to one or more of the following
requirements:

1) Making slight modifications to the driver assuming that
such modifications can be easily adapted by all manu-
facturers [19].

2) Strict time synchronization that requires both processing
and networking overhead. This overhead is unnecessary,
especially because WiFi is increasingly becoming the
main interface for weak devices with limited power [18],
[20].

3) Operating in promiscuous mode to listen to or detect
certain types of packets, which leads to power overhead
to keep the network card on and listening. It also requires
a large overhead to process all sniffed packets [19].

In this paper, we propose an augmentation scheme that
adheres to the four principles introduced, while avoiding
the above requirements. To enable such augmentation and
interoperability, we adopt the notion of soft scheduling where
upgraded nodes are informed of the network schedule and
are asked for a best-effort attempt to adhere to the schedule.
We allow the soft scheduler to coexist with and work at a
different time scale from WiFi’s DCF (i.e., milliseconds instead
of microseconds). This allows the soft scheduler to introduce
coordination and reduce the time nodes spend contending
for the medium, while allowing DCF to handle only missed
schedule slots and schedule divergence.

We introduce our new Soft Token Passing Protocol (STPP)
that operates on top of 802.11’s DCF to coordinate medium
access (Section III). STPP is based on our key insight that
to provide performance that is better than random access,
a protocol should balance schedule synchronization and idle
time minimization. STPP relies on token passing to synchro-
nize a Time Division Multiple Access (TDMA) schedule. The
protocol uses a combination of softer rules for token-passing
and TDMA. For instance, while it attempts to keep the number
of tokens at one, it allows for multiple tokens. Moreover, while
it attempts to keep the schedule synchronized, it allows for
overlapping transmission slots. This combination helps STPP
avoid idle time while forcing at least a subset of nodes to
adhere to the TDMA schedule, leading to improved average
network performance. WiFi deployments are diverse, and thus,
produce different requirements and constraints on the system.

We show how STPP can be made part of a MAC protocol
with specific performance improvement goals by developing

the Wireless Low-Latency Local Links (WL4) system (Section
IV). STPP and WL4 are developed specifically for local
communication settings where improving latency while main-
taining high throughput is the main objective. This objective is
motivated by the aforementioned use cases of screen mirroring
and augmented reality applications. In those settings, a small
number of devices are typically contending for the medium
in the same room, and low latency and high throughput are
key requirements. Therefore, WL4 relies on a central controller
that allocates medium access shares based on predefined share
requests made by local links between such devices.

We evaluate WL4 on a five node microbenchmark (Section
V) and quantify the system’s overhead on network throughput
and latency. We evaluate WL4’s impact on both synthetic
traffic and traffic generated by an Augumented Reality (AR)
application. We show that STPP enables WL4 to adhere
to our augmentation principles, while improving the latency
within the system. Our results show that our STPP enabled
WL4 MAC improves latency in local links by 40% with a
proportional impact on their throughput. We also show that
the coordination overhead does not incur more than a 9% loss
in terms of throughput while improving the average latency in
the network by 38%. We also find that as the number of nodes
increases, WL4’s impact on latency increases (i.e., reduces
latency) while its effect on throughput diminishes (i.e., smaller
loss in throughput).

Overall, we make the following contributions:
1) We develop a protocol, STPP, that enables the im-

provement of 802.11 and adheres to the principles of
augmentation we introduced without any violations.

2) We integrate the protocol into our WL4 system to create
an operational MAC protocol in the linux kernel that
improves the latency of local communication in WiFi.

3) We deploy WL4 in an experimental setup and show that
it can greatly improve performance of high priority links
without impacting legacy WiFi systems and applications.

II. RELATED WORK

WiFi has a very long history that is hard to capture in
a single paper. Surveys have been written to capture work
done on different aspects of WiFi, from scheduling to power
efficiency, and deployed in different settings, from home to
enterprise to sensor and vehicular networks. We focus here
on the directions we find to be most related to our approach,
namely, attempts to schedule WiFi to improve performance
with respect to both latency and throughput.

TDMA on Commodity Devices: There are several pro-
tocols that have been proposed over the years that rely on
Time Division Multiple Access (TDMA) to improve the per-
formance of WiFi. We pick two examples that can be deployed
on commodity devices. Clock synchronization-based protocols
like Soft-TDMAC [18] and OpenTDMF [20] attempt to allow
nodes to reach microsecond level synchronization. This level
of synchronization requires significant CPU and messaging
overhead. Soft-TDMAC implements an NTP-like protocol
using fine grain timers, which also consumes considerable



CPU. On the other hand, OpenTDMF focuses on scheduling
WiFi as an access network to the Internet (i.e., synchronization
between access points in an enterprise network). This does not
provide a clear solution for local and direct communication
over WiFi (e.g., two nodes in a multiplayer game). OpenT-
DMF achieves coordination between access points through out
of band time synchronization. Furthermore, both OpenTDMF
and Soft-TDMAC require changes to driver and kernel imple-
mentation. Our own STPP uses TDMA-like schedules without
introducing significant CPU overhead while relying on above
driver changes only.

Overlay MAC Protocols: Several protocols over the years
have been proposed as “layer 2.5” or as overlay MAC proto-
cols. Such protocols are the closest to STPP. However, earlier
approaches violate one or more of the unrealistic requirements
we discussed earlier. For instance, OML [19] is an overlay
MAC protocol that provides extra medium access control
functions above those provided already by the hardware and
driver. OML requires editing the driver to control the number
of packets enqueued in a layer below OML. OML also requires
operation in promiscuous mode, which as discussed earlier
leads to power and processing overhead.

“Look-Who-is-Talking” Protocols: Distributed-
Centralized hybrid MAC protocols have been proposed
aiming to schedule either uplink only [21], downlink only
[22], or relying on relative scheduling for both uplink and
downlink flows [23], [24]. Domino [23] and LWT [24] rely
on relative scheduling between nodes. In particular, each node
listens for who is currently transmitting to know its own turn
to transmit. This process is coordinated by a central node
that transmits the schedule to everyone. This approach makes
these protocols applicable in local communication scenarios
which resemble WL4’s approach. However, Domino and
LWT make several non-practical assumptions.For instance,
both Domino and LWT require nodes to overhear the medium
to gain any benefits which causes high processing and power
overhead. Furthermore, both LWT and Domino require
significant changes to how WiFi hardware and software
operate, which renders it not practical and thus difficult to
deploy. Significant changes to WiFi operations and hardware
are required to allow devices to detect the node currently
transmitting and synchronize schedules efficiently. STPP
simplifies this approach by relying on token passing to
determine the node that should be transmitting.

QoS Support in MAC protocols: These protocols provide
differentiation of service between Access Categories (ACs).
For instance, 802.11e [1] provides coarse grain level statistical
differentiation of service by differentiating between the DCF
parameters of different ACs. This approach gives high priority
classes improved likelihood of medium access. SlickFi [17]
provides differentiation of service by adapting channel width
based on application demand. This is achieved by relying on
two radios in the access point. Another example is SoftMAC
[25] which provides QoS aware queuing and admission control
above the driver. These approaches can be considered orthog-
onal to STPP as they provide differentiation of service within

the random access platform. STPP can leverage this as well.
Low Latency WiFi: Recently, WiFi has been singled out

as the major source of latency in WiFi-based Internet access
[26], [27]. Several approaches have been proposed to lower
the latency including better queuing mechanisms in access
points [26], relying on the redundancy of wireless links [28],
and changing access point parameters including transmission
power, location, and bit rate adaptation mechanisms [29], [27].
This line of work focuses on improving WiFi induced latency
for Internet access by improving access point characteristics.
However, for local communication, going through the access
point remains a major source of latency and adds one hop to
the data path. Furthermore, most of the suggested improve-
ments target latencies induced by current designs of access
points. This makes them not useful in handling latency of
direct links, where nodes are talking directly to each other not
through the AP. In this paper, we focus on minimizing latency
for local communication. STPP is orthogonal to presented
work on low latency WiFi. For instance, direct local links
are not impacted by improvements in the access point. On
the other hand, they can benefit from techniques like latency
aware adaptive rate. Moreover, networks discussed in earlier
work can benefit from scheduling offered by STPP.

Soft Real-time Scheduling: This approach stems from
work on soft real-time systems that require statistical guar-
antees for meeting deadlines as opposed to hard real-time
systems that require meeting all deadlines [30]. However, in
this paper, we push the idea by further relaxing the guarantee
requirements on the soft scheduling algorithm. This is enabled
by allowing the soft scheduler to operate at a coarse time
granularity while allowing the WiFi DCF to resolve conflicts
at small time granularities.

Multi-hop, Ad-hoc, and Sensor Networks: Improving
the performance of local wireless communication is a well-
studied problem in the context of multi-hop wireless networks
[31], ad-hoc and mobile ad-hoc networks [32], and sensor
networks [33]. These proposals develop MAC protocols that
achieve some network objective (e.g., high throughput or
low latency) while sometimes dealing with issues related to
dynamic network topologies (e.g., a mobile ad-hoc network).
The resulting solutions are by necessity complex, do not
necessarily target low latency, and do not directly map to the
simple WiFi scenarios we consider in this paper.

III. SOFT TOKEN PASSING PROTOCOL

We now describe the Soft Token Passing Protocol (STPP) as
an instance of the soft scheduling approach. In this approach,
nodes are informed of the network schedule and are asked
for a best-effort attempt to adhere to the schedule. Later, in
Section IV, we will show how STPP can be used as part of an
overall MAC protocol architecture that meets the augmentation
principles discussed in Section I.

A. Problem Context

STPP operates in a WLAN with a single access point and
where random access using 802.11’s distributed coordination
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functions (DCF) is available as a medium access control
protocol. Direct links between mobile devices within range
of each other are enabled using TDLS [34]. The devices
within the WLAN are divided into separate collision domains,
as shown in Figure 1. In a single collision domain any two
simultaneous transmissions cause a collision.

STPP assumes the presence of a controller that coordinates
its schedule. This controller can reside in an access point or
in one of the participating nodes within a collision domain.
Relying on the access point as the controller is the most
straightforward approach. However, this requires upgrading
the software of access points. If this is not possible, controllers
can be deployed on one of the wireless devices. In this case,
one would need to deploy procedures for leader selection and
leader migration in case of controller failure (e.g., controller
node shutting down or walking away). Solutions for such
scenarios have been well-researched in the distributed systems
literature [35]. For our purposes, we assume a fixed and
reliable controller and focus on the details of STPP itself.

To identify collision domains, nodes exchange periodic
beacons to construct a list of nodes they can directly overhear.
These lists are sent to the controller which performs clustering
to group nodes in collision domains. Note that these beacons
allow for handling node mobility by keeping an updated list
of nodes within a specific collision domain. A node in the
WLAN will send and receive traffic of three types: 1) traffic
from/to nodes outside the WLAN, 2) traffic from/to nodes in
the same WLAN but at a different collision domain, and 3)
traffic from/to nodes within the same collision domain. The
first two types of traffic have to go through the access point.

The focus of this work is on local communication, be it
through direct links between nodes within the same collision
domain (e.g., using TDLS), or between nodes and the access
point. Single-collision-domain local traffic is handled by STPP
by augmenting the network stack on the sender. Importantly,
STPP does not introduce any changes to the receiver. STPP
controls medium access by constructing schedules that allocate
time slots for each link. The length of a link’s slot can be
determined in multiple ways (e.g., relative shares).

In our design and implementation, we determine slot dura-
tion and shares as follows. Each node probes the length of the
queue at its transport layer and sends it to the AP. We choose
to probe transport queues as they are more representative of
application demand. For instance, in the Linux networking
stack, TCP Small Queue maintains a small number of packets
in the queues of lower layers [36]. The AP uses the relative
lengths of the queues to determine slot shares. We have a
maximum cap for demand where all demand equal to or higher
than the cap is set to the cap. Note that this maximum demand
can be set based on a node’s weight or priority. We note
that shares can be translated into bits per second allocations
based on observed rates. Slots in the schedule span a few
milliseconds and their lengths depends on the allocated share
of each node. Hence, STPP coordinates medium access at the
millisecond level and delegates to DCF coordinating medium
access at the microsecond level to handle missed slots and
occasional schedule divergence (e.g., when collision occurs
due to nodes missing their slot).

B. Protocol Overview

A typical approach to increased coordination is Time Di-
vision Multiple Access (TDMA) where each local link is
allocated a time slot over which it can transmit without
contention. One of TDMA’s problems is that the time allocated
to a link may go unused if there is no data to transmit on the
link. Another problem is that TDMA schedules require strict
synchronization within the network [37]. Correct behavior of
TDMA protocols is contingent on avoiding collisions. Hence,
synchronization mechanisms exist to keep the slots from over-
lapping during which no node can transmit. These problems
can be addressed by using a token passing protocol [38] in
which tokens representing exclusive permission to transmit
are passed among nodes in some order. With token passing,
every node has a predecessor from which it receives a token
and a successor to which it transmits this token. In a WLAN
setting, token loss can be frequent [39]. Correct behavior of
typical token-passing protocols is contingent on having one
token in the network. Hence, complex and high overhead
mechanisms are implemented for token recovery [38]. Because
of their complexity and strict synchronization requirement,
neither TDMA nor token passing allow WiFi augmentation
according to the principles we laid out in Section I.

To achieve our objectives we develop the Soft Token Passing
Protocol (STPP) with a design philosophy that attempts to
improve on contention-based medium access by increasing
coordination and avoiding idle time. The protocol is built
on top of WiFi’s DCF functions thus providing backwards
compatibility with WiFi-only devices. Relying on a centrally
constructed, distributedly enforced schedule, STPP imposes
softer rules compared to typical token-passing and TDMA
protocols. It allows for multiple tokens, while attempting to
reduce them to only one. It also allows for overlapping slots,
while attempting to synchronize the schedule. In other words,
links are never forced to stop transmitting by the protocol
when it is trying to recover from an error. STPP operates on a



per-link basis where a link is a communication flow between
two nodes. Note that due to timed slots, nodes can detect token
loss through timeouts. This approach allows for controlled
allocation to links and significantly reduces protocol overhead.
STPP’s softness can result in giving permission to multiple
links in the WLAN, thus resulting in potentially overlapped
transmissions. These are handled by the underlying 802.11
DCF functions.

C. Protocol Operation

The key to STPP operation is the scheduling algorithm that
controls access to the channel for different links. A link is
defined as a connection between two nodes within a single
collision domain. We describe the basic operation of the
algorithm for direct links, followed by the mechanisms used
for robustness in the face of frame loss or node failure. We
then discuss how unscheduled traffic is handled.

1) Basic Operation: We now discuss the most common
features of the STPP protocol in standard operational mode.

Schedule Construction: The algorithm takes as input the
per-link requests for shares of the channel, indicated in mul-
tiples of a minimum allocation time. Similar to a TDMA
system, the controller uses these requests to create a schedule
comprising an order for links to take turns accessing the
channel. The schedule is shared with all STPP nodes so that
each link sender knows when to take its turn. In each cycle
through the full schedule, each link gets to access the channel
for the requested allocation time.

Unlike TDMA, STPP is augmented with token passing.
The source node for the currently active link holds a token.
When the source node either completes transmitting all its
data or reaches the end of its allocation, whichever comes
first, it transmits the token to the source of the next link in
the schedule. This simple and old idea allows more efficient
use of the channel than a strict TDMA schedule. It also
relaxes the need for strictly synchronized clocks at each
node since token passing is used to indicate a turn taking
transition. The schedule is shared with all nodes via reliable
TCP connections between the controller and each node in the
collision domain. The token is broadcast so that all nodes,
including the controller, overhear the token transmission.

Token Structure: The token has two parameters, the ID of
the link sending the token and the ID of the link receiving the
token, used to specify which node should pick up the token.
In steady state, each link gets one turn per cycle to transmit
up to its requested share. If a link does not need the full share,
it passes the token to the next link.

Schedule Membership Management: When a new link
is needed, the source node notifies the controller, which
updates and transmits the new schedule. The same steps occur
when a link is no longer needed: the source node notifies
the controller; the controller recomputes the schedule and
transmits the new version to all nodes. On the creation of
a new schedule, all nodes update their shares and order. The
schedule message is treated as a token for the first node on
the schedule with the rest of the nodes pausing transmission.

Algorithm 1 Soft Token Passing Functions.
1: procedure ONTOKENRECEIVED()
2: if TokenExpiryPeriod > Now &&

Token.Src != TxNode then
3: Discard Token
4: else if Token.Dst == ID&&QueueHasPackets() then
5: Refresh Share
6: Resume Transmission
7: else
8: TxNode = Token.Dst
9: TokenExpiryPeriod = Now + Share[Token.Dst]

10: end if
11: end procedure
12: procedure ONDATAFINISHEDORSHAREFINISHED()
13: Generate and Send Token
14: Pause Transmission
15: Start Max Token Passing Timer
16: end procedure
17: procedure ONMAXTOKENPASSINGTIMER()
18: Refresh Share
19: Resume Transmission
20: end procedure

2) Protocol Robustness: The protocol has additional mech-
anisms to make it robust to the following issues.

Multiple Tokens: If a currently active link holds a token
and a second token appears on the channel, the second token
will be discarded by its receiver. To achieve this, each link
estimates the time when the destination link of a token should
finish and keeps track of that transmitting link. During that
period, referred to as the Token Expiry Period, all tokens
are discarded except for the token sent by the transmitting
link, which also handles scenarios where the links finishes
earlier than planned (i.e., that token is not discarded). This
ensures that only one token survives, as the token sent by the
transmitting link will start a similar period of token discarding.
However, a lost token in a perfectly synchronized schedule can
cause idle periods of the length of the schedule. Hence, we
allow the Token Expiry Period to be a system parameter that
controls how strict the system is about having multiple tokens.

Token Loss: Each link estimates the time when it should
next get the token, based on knowledge of the schedule. After
completing a turn, the source node sets a timer estimating
the Max Token Passing Time. If the timer expires without
the return of the token, the source node assumes it has the
token and takes its normal turn. When timers are accurate,
this mechanism allows the next source node in the schedule
to quickly recover the lost token. If a timer fires on a late,
but not lost token, the token will end up reaching the node
while it is transmitting. In that case, the node assumes that its
share just started on the reception of the token and ignores the
data transmitted before the token. This helps keep the schedule
synchronized at the expense of giving that node more than its
allocated share.

Node Failure: If a node fails then any links it participates
in also fail. If the node is the source of a link then failure will
be evident when the token is passed to the link and there is
neither data traffic on the medium nor a passing of the token
to the next link. The mechanisms that recover from a lost
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token will recover the token; the controller will also observe
the node silence, remove all links involving the node from the
schedule, and transmit the new schedule. This is also useful
to avoid having long schedules with idle nodes. Hence, STPP
follows a policy of removing nodes if they are silent (i.e., not
transmitting) for more than two seconds.

3) Handling Unscheduled Traffic: Nodes that do not im-
plement STPP, yet share the channel, will have unscheduled
traffic. To maintain backward compatibility and co-exist with
non-local traffic, the controller monitors the channel usage by
non-scheduled traffic and predicts the nominal rate available
for scheduled traffic. This prediction of the nominal rate is
calculated as a weighted moving average of the rate achieved
during the two most recent schedules. The controller keeps
track of nominal rates, and when change occurs this nominal
rate, it sends it to all nodes. Note that changes in nominal
rate are triggered at the start or the end of transmission of
unscheduled traffic, which is typically captured by the access
point. We rely on such triggers to transmit the nominal rate
from the controller to the nodes. The task of calculating a
nominal rate is not an overhead on the controller as it is tasked
with overhearing the medium for scheduling purposes as well.
Given a predicted nominal rate, the links translate their time
share allocation into a byte limit, and use this byte limit to
determine the end of a turn.

4) Two-hop Links: A two-hop local link is used when its
performance is expected to be better than the direct link.
A background monitoring process provides measurements to
determine which to use (§III-F). In addition to the direct link
share requests described above, STPP also takes requests for
shares of two-hop links. Each two-hop link is converted into
two “direct” links, with the AP as an endpoint in each. These
two direct links are incorporated into the turn taking schedule
and treated as direct links with respect to token passing.

The operations described above are encoded
in three main procedures OnTokenReceived,
OnDataFinishedOrShareFinished, and
OnMaxTokenPassingTimerExpiry as shown in
Algorithm 1.

D. Soft Token Passing Scenario

Figure 2 shows an example of a typical STPP schedule.
In this example, we assume for simplicity that all links are
transmitting at the same rate whether they are using the

link exclusively or contending for it. Note that because of
this example, we can use shares in terms of time or rate
interchangeably. We also assume that each link belongs to a
different pair of nodes (i.e., this scenario involves a total of 6
nodes).

In this example, we present a worst case scenario where all
links timeout and start transmitting at the same time causing
collisions which are handled by DCF. Links get to a contention
period where they timeout due to multiple token losses at time
zero. Links 1, 2, and 3 are allocated shares of 10Kb, 20Kb, and
30Kb respectively. Link 1 finishes its share first and passes the
token to Link 2. On receiving the token, Link 2 refreshes its
share and Link 3 starts a token expiry period of length 20Kb.
Recall that the Token Expiry Period is a system parameter
that controls how strict the system is about having multiple
tokens. In particular, during a Token Expiry Period, all tokens
are discarded except for the one generated by the transmitting
link according to the schedule. Using the Token Expiry Period,
STPP reduces the number of competing links. Then, links 2
and 3 finish at the same time. Links 3 and 1 receive tokens
from both Links 2 and 3. The token from Link 2 is transmitted
first, forcing a Token Expiry Period at Link 1 which discards
the token generated by Link 3. This is resolved independently
and Link 3 refreshes its share. Link 3 runs out of data and
transmits its token before it finishes its planned share. Link
1 receives the token and starts transmitting. However, due to
interference, Link 1 takes a longer time to finish its share.
Link 2 times out and starts transmitting. Link one finishes
and passes the token to Link 2. Link 2 refreshes its share.
Afterwards, tokens are passed as expected.

E. Soft Token Passing vs DCF

The load on the network is a critical factor in determining
the impact of STPP on network performance in comparison
with DCF. There are two parameters controlling the load: 1)
the number of nodes, and 2) the traffic load at each node.
STPP is most useful for a small to medium scale network (2
to 10 nodes) with medium to high traffic loads. In this case,
STPP reduces contention and results in better average network
latency and negligible effect on throughput. As the number of
nodes increase, the chances of two or more nodes contending
increases (e.g., due to the underestimation of nominal rates).
This will lead to degradation in the performance of STPP
bringing it closer to DCF.



On the other hand, as the load on each node decreases, STPP
coordination is turned into overhead. This means that DCF will
be more suitable. This is the behavior that STPP attempts to
achieve by removing nodes that are silent for more than two
seconds from the schedules. This removal leads to a reduction
in the number of nodes on the schedule as load decreases,
leading to smaller overhead of the coordination algorithm.
Also, note that under very light loads, traffic can fit in one
share allowing a node to transmit immediately once it has
traffic.

F. Direct vs two-Hop

We note that using a direct link is not guaranteed to provide
low-latency local communication. We now focus on how to
determine which path to choose: direct communication, or
communication through the AP. Nodes have to compare the
characteristics of the direct link to the AP-based link. Several
metrics have been presented in literature to compare wireless
routes in terms of latency, RTT, and throughput per hop [40].

Since throughput is mostly determined through shares in
the STPP schedule, we focus on latency as the main metric
for selecting between direct and two-hop links. STPP relies
on periodic pings between an actively communicating pair
of nodes. STPP sends two consecutive ping packets through
different paths by modifying the From DS and To DS fields in
the MAC header of the ping packet. This determines whether
the packet goes through the access point or directly to the
destination. The response packets mirror the markings of the
ping packets.

Based on our measurements, we observe that the main cause
of deterioration of latency in direct links, compared to two-
hop links, is distance. This means that if latency on a direct
link was found to be better than latency of the two-hop link,
this can only change at a rate corresponding to human walking
speed (which is the main way of increasing distance between
two nodes). Hence, we send ping packets at 100ms intervals. If
10 consecutive pings determine one approach to be superior to
the other, we consider this as a sign of mobility and we switch
to the mode with lower latency. Note that switching between
direct and AP-based communication is performed through the
TDLS protocol.

IV. BUILDING A MAC ARCHITECTURE AROUND STPP

We now demonstrate how Soft Scheduling, as instantiated
by STPP, can be used as part of a full MAC architecture
that adheres to the augmentation principles in Section I. The
MAC protocol we describe, Wireless Low-Latency Local Link
(WL4), aims at reducing MAC latency for local communica-
tion (i.e., where all nodes belong to the same collision domain)
using STPP. An overview of the WL4 system architecture is
shown in Figure 3. In this section, we present the system’s
two major components and their implementation.

WL4 Nodes each have two components: WL4 Client and
the STPP module. The WL4 Client handles several control
functions. It creates the beacons that allow for the construction
of the collision domain. This allows it to determine whether

WL4 Node

TCP/IP

STPP

NIC Driver

WL4 Client

WL4 Controller

Scheduler

Network Observer
Wireless 
Traffic

Quota and 
Schedule 
Membership 
Management

802.11 DCF

TDLS

Quota Configuration & 
Transmission Control

Data Packets

Control Packets

Fig. 3. WL4 system architecture.

a direct or an AP-based link should be used for each local
link. It also manages the membership of local links in the
STPP schedule by communicating with the controller. It uses
the share obtained from the controller to configure STPP. It
also handles token processing and the decision of resuming
transmission. The STPP module implements the STPP proto-
col discussed in the previous section.

WL4 Controller has two components: Scheduler and Net-
work Observer. The Scheduler determines the share of each
link in the STPP schedule. This is determined based on the
link’s Access Category (AC) or its requested share. The sched-
uler also handles membership in the schedule. In particular, a
new link requests to join the schedule and indicates its AC.
This messaging is implemented in the application layer over
TCP. This approach provides reliability. The Network Observer
constantly hears traffic belonging to the collision domain, and
determines idle nodes. We find that if a node is silent for more
than 2 seconds, it should be off the schedule because otherwise
the performance of the rest of the nodes starts to deteriorate.

WL4 Implementation takes place by integrating STPP
by modifying the mac80211 module in the Linux kernel
with a total of 307 lines of code. STPP is implemented in
the wireless transmission path and performs share accounting
and TCP queues checking. This component also has the
interface needed to pause and resume queues which is used
by other components. We implement the WL4 Client as two
components: 1) token processing in a Click Modular Router
element [41]. 2) A python program that reacts to control
messages. This split corresponds to the token being a MAC
layer control packet, while the rest of the control messages are
treated as application layer messages over TCP. We implement
control messages over TCP to ensure reliability and avoid loss.
We implement the interface between STPP and the WL4 Client
by extending wpa_supplicant to provide WL4 primitives
in order to control adding peers, changing their shares, and
changing the timeout. The controller is implemented as a
simple python program that communicates with Python clients
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Fig. 5. Effect of number of links on average network throughput (left) and
latency (right) for WL4 compared to uncoordinated direct links.

that invoke wpa_supplicant.

V. EVALUATION

A. Experimental Setup

We conduct experiments on an indoor wireless network
deployed in an office on campus. This network coexists with
several other networks and is not isolated. The testbed is
composed of five desktops with PCIe ath9k AR93xx wireless
cards. The testbed also included two Raspberry Pis and a
laptop each equipped with a USB ath9k AR9002U wireless
cards. We perform all of our experiments in the 2.4Ghz band.
However, WL4 does not constrain the band.

We use netperf to generate TCP traffic and use the re-
port of netperf as achieved throughput. Background traffic
for uncoordinated links is generated the same way. In the
application evaluation, we implement an augmented reality
application using ArUco library [42]. A client node captures
images through an attached camera and sends it to a server
node for processing. The networking overhead is mainly in the
transmission of the 1.7 Mbytes images from the camera to the
server. The server replies with 100 byte markers that the node
can impose on the captured images which represents minimal
networking overhead. We use RTT reported by ss (socket
statistics) command which represents the average RTT seen
by the socket.

We collect RTT measurements every 100 ms. All reported
results are the average of 4 experiments of length 100 seconds
each. We find this experiment size to be sufficient as variance
tends to be very small. We use a Token Expiry Period of zero
for all experiments. We discuss the effect of Token Expiry
Period values later in this section. We refer to a share in figures
using variable q, where qmax is the maximum share. We refer
to cases where DCF is used without WL4 as Direct.
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B. WL4 Microbenchmark

Impact on high priority links: Figure 4 compares the
CDFs of the RTT for the fastest link among five nodes using
TDLS and the highest priority link using WL4 using different
shares. As the share increases, the latency decreases. WL4
improves median latency by 24%, 30%, and 35% respectively.
Moreover, WL4 improves tail latency at the 90th percentile by
32%, 38%, and 40%. It also reduces the 99th percentile by up
to 53%.

Impact on average network behavior: We compare the
behavior of WL4 and uncoordinated direct communication as
we increase the number of links in Figure 5. We compare
total network throughput to illustrate utilization of the medium
for both approaches and average network latency to show the
impact of coordination. Results show that the impact of WL4
ranges from 7% improvement in the case of two links to 9%
reduction in the case of three links. However, it is consistently
improving latency by at least 17% and up to 38%. This implies
that WL4 improves latency with minimal impact on medium
utilization.

Impact of non-WL4 devices on WL4 gains: WL4 aims
at providing benefits while retaining backward compatibility.
This means that while some links will be coordinated using
WL4, some other links within the same network can be unco-
ordinated. Figures 6 and 7 show the effect of uncoordinated
links on the performance of four WL4 links compared to their
effect on TDLS links. We note that the first uncoordinated
link is a two-hop link and the rest are all TDLS. We find that
WL4 improves latency by 10%, 1%, and 5% respectively while
reducing throughput by 2%, 5%, and 2%. WL4 can improve
latency while having negligible effect on throughput in the
presence of uncoordinated links. We observe that average
network throughput for these cases does not change as the
number of links is constant, this requires very few exchanges
of nominal rate values.
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Share Division: Figure 8 compares the throughput achieved
by five links under different share assignments, where the rate
is configured for the experiment and not based on demand. It
shows the actual achieved rate compared to the ideally achiev-
able rate under the corresponding sharing assignment. The
figure also shows that WL4 provides accurate assignment with
an average deviation from the assigned share of 1.15 Mbps.
This result is achieved by setting slot sizes to correspond to
the demand of individual nodes. This sets the rate of operation
for each node.

Impact of traffic patterns: We model traffic as a Poisson
process with varying the rate of interarrival time. Each traffic
event is of length 10 seconds. Experiments here are conducted
for four nodes. The process on each node is independent but
they all have the same value of the rate of the interarrival
time. We compare uncoordinated direct communication with
WL4 under two share assignments (S1:4-4-4-4 and S2:4-3-2-
1). Figures 9 and 10 show the impact of traffic interarrival time
on median throughput and latency. We use median throughput
rather than total throughput, as the total throughput in this
case does not represent actual medium utilization since links’
transmission do not necessarily overlap. As expected, for small

 0
 10
 20
 30
 40

 0  1  2  3  4  5  6  7  8T
o

ta
l 
N

e
tw

o
rk

T
h

ro
u

g
h

p
u

t 
(m

b
p

s
)

Expiry Period (ms)

Fig. 11. Effect of Token Expiry
Period on median latency of a WL4
network of four nodes.

 0
 2
 4
 6
 8

 10
 12

 0  1  2  3  4  5  6  7  8A
v
e

ra
g

e
 N

e
tw

o
rk

L
a

te
n

c
y
 (

m
s
)

Expiry Period (ms)

Fig. 12. Effect of Token Expiry
Period on median latency of a WL4
network of four nodes.

 0
 100
 200
 300
 400
 500
 600

No Cont. Cont. q=67% q=80% q=88%

L
a
te

n
c
y

p
e
r 

fr
a
m

e
 (

m
s
)

Fig. 13. Latency per frame for an augmented reality application when no
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interarrival times of 2 seconds, contention is high and WL4
provides significant latency benefits of 17% reduction with
10% reduction in throughput in case of S2. However, as the
interarrival time increases, contention is reduced and token
passing represents only overhead. Hence, we recommend that
if a node is not transmitting for 2 seconds, the controller should
take it off the schedule.

Effect of Token Expiry Period: In Section III, we intro-
duced Token Expiry Period as the means to move the system
into synchronized coordination. Figures 11 and 12 show the
effect of changing the Token Expiry Period from 0 to 8 which
is the maximum share. We find that, while it improves latency
(due to better coordination), it hurts throughput very little (due
to added idle time). We recommend using a value of zero
which we used in all other experiments. This allows WL4 to
improve latency while having negligible effect on throughput.

C. WL4 and a Low Latency Application

Figure 13 shows the performance of an augmented reality
application in terms of latency per frame. We first measure
the performance of the application with no background traffic
in the network and all traffic was transmitted through a direct
link (No Cont.). This provide a baseline for performance of the
application that cannot be exceeded of 297 msec per frame.
We also measure the performance of the application when it
competes with background traffic through CSMA/CA (Cont.).
This provides an upper bound on the latency that WL4 should
not exceed. Figure 13 shows that when WL4 is used to give
the application a higher share and hence more access to the
medium, the application can reach a latency that is only 10%
worse than its best performance while allowing background
traffic to operate at a reasonable rate.

Figure 14 shows the value of having WL4 periodically
compare AP-based links to direct links to optimize application
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Fig. 14. Latency per frame for an augmented reality application when the
client and server are placed far apart. WL4 disables the direct link and
communicates through the AP which significantly improves performance.

performance. As the client moves away from the server, the
channel conditions between the two nodes degrade, which
forces a lower bit rate and higher loss. However, the link
to the access point remains of good quality. As shown in
Figure 14, realizing such situations and switching back to AP-
based communication can improve the performance by 3x.

VI. DISCUSSION

WL4 Security: There are two types of attacks that WL4
can face: 1) attacks on the controller, and 2) malicious nodes.
Protection of the controller is similar to the protection of
access points. Recall that WL4 relies on TDLS, and inherits
all of its security features. As for malicious nodes, such nodes
will use the medium aggressively beyond their allocated slots.
However, this behavior can be detected by the controller and
those nodes can be taken off the schedule. We have shown that
WL4 can still result in performance gains in the presence of
such uncoordinated nodes. Another attack by malicious nodes
is falsely declaring their Access Category. Such violations can
be detected by the controller through occasional checking of
port numbers used by the transport protocol and comparing
them to known or reserved port numbers.

WL4 Multihop Communication: Communication through
the access point was shown to incur high latency even with
a lightly loaded access point. Our initial experiments with
a university campus enterprise wireless network show that
latency experienced on such networks for local communication
can reach hundreds of milliseconds. The work in Section III-F
can be extended to accommodate choices with more that two
hops. We envision that WL4 can be used to lower latency
of enterprise wireless networks by forming a mesh network
of devices connected to the enterprise network. WL4 can
make use of earlier work on mesh network and mobile adhoc
networks to find the best routes between source and destination
and maintain a connected network.

Integration with Wireless SDN Systems: WL4 can be
integrated into Wireless SDN systems (e.g., OpenSDWN [43])
by allowing such systems to communicate their schedules to
the WL4 controller which allows full control on the behavior
of all L4s. Services provided by OpenSDWN like service
differentiation and participatory networking can be commu-
nicated to all nodes and executed in a distributed fashion.
We also note that other services offered by OpenSDWN are
orthogonal to WL4 and can operate normally without the need

to be modified or interact with WL4 (e.g., handling node
mobility and roaming between access points).

Scheduling Transport Layer Flows within a WL4 Link:
WL4 focuses on scheduling multiple links in the MAC layer.
However, it assumes that this link either contains a single
transport (TCP or UDP) flow, or multiple flows with the same
access category. Differentiation of service between multiple
flows within a single link can be achieved through traffic
control at the source. Queuing disciplines such as HTB can
be used to provide differentiation of service between multiple
flows.

VII. CONCLUDING REMARKS

In this paper, we argue that simple high level augmentation
of WiFi is the only feasible, deployable solution for large scale
improvement of MAC layer performance. This improvement
is needed to meet application demands. We develop a set of
principles that this augmentation needs to adhere to. We argue
that an introduction of scheduling transmission mechanisms
has the potential to endow WiFi with significant additional
functionality to allow it to respond to these rising application
demands. We introduce the idea of soft scheduling as a
means to maintain interoperability, transparency, and ease of
deployment. We propose and develop the Soft Token Passing
Protocol (STPP) and demonstrate how it can be used to
construct a full MAC protocol, WL4, that we implement to
reduce link latencies in WLANs.

Further research is needed to better understand the fun-
damentals of soft scheduling and its use to construct full
MAC protocols. Are there other techniques that can be used
to provide additional MAC features? How can one use these
techniques to target other performance improvements for WiFi
deployments? Are there limits to our ability to augment WiFi
protocols and still adhere to the principles of Section I?
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