
Up and Away: A Visually-Controlled
Easy-to-Deploy Wireless UAV Cyber-Physical

Testbed
Ahmed Saeed†‡, Azin Neishaboori†‡, Amr Mohamed‡, Khaled A. Harras†

†School of Computer Science, Carnegie Mellon University Qatar
‡Department of Computer Science and Engineering, College of Engineering, Qatar University

Email: cse.saeed@gmail.com, azin.neishaboori@gmail.com, amrm@ieee.org, kharras@cs.cmu.edu

Abstract—Cyber-Physical Systems (CPS) have the promise
of presenting the next evolution in computing with potential
applications that include aerospace, transportation, and various
automation systems. These applications motivate advances in the
different sub-fields of CPS such as mobile computing, context
awareness, and computer vision. However, deploying and testing
complete CPSs is known to be a complex and expensive task. In
this paper, we present the design, implementation, and evaluation
of Up and Away (UnA): a testbed for Cyber-Physical Systems that
use Unmanned Aerial Vehicles (UAVs) as their main physical
component. UnA aims to abstract the control of physical system
components to reduce the complexity of UAV oriented CPS
experiments. UnA provides APIs to allow for converting CPS
algorithm implementations, developed typically for simulations,
into physical experiments using a few simple steps. We present
two scenarios of using UnA’s API to bring mobile-camera-based
surveillance algorithms to life, thus exhibiting the ease of use and
flexibility of UnA.

I. INTRODUCTION

Cyber-Physical Systems (CPS) have the promise of pre-
senting the next evolution in computing by bridging the gap
between the virtual world and the physical world. CPS appli-
cations include aerospace, transportation, factory automation,
and medical systems [1]. This new paradigm is created based
on new ubiquitous computing systems and communication
services available all the time, everywhere. These systems
and services forming networks of users, sensors, devices, and
applications may seamlessly interact with each other and their
environment in unprecedented ways [2]. CPS’s are supported
by developments in other research fields including mobile
computing, embedded systems, computer vision, control, and
communication. While these developments ultimately con-
tribute to advancing different CPS components, most of the
work is evaluated via simulations or experiments that focus
on a specific sub-problem. Furthermore, the complex nature
of full scale CPS experiments makes the task even harder,
especially when it comes to testing individual ”cyber” or
”physical” components. From a different perspective, current
generic CPS testbeds [3] are typically complex and incur large
deployment costs.

In this paper, we present Up and Away (UnA), a testbed that
aims at providing a low-cost, easy to use and deploy, physical
system composed of multiple remotely controlled quadcopters.
UnA provides an API that allows for integration of simulation

code that will obtain input from the physical world (e.g.
number of targets to track in a surveillance scenario) then
provide control parameters (i.e. number of quadcopters and
destinations coordinates) to the UAVs. Thus, UnA allows for
rapid development of cyber-physical systems experiments that
use quadcopter UAVs. UnA’s design choice of using UAVs is
due to the their deployment flexibility and maneuverability.
UAVs are suitable for many applications such as urban visual
sensing in disaster response scenarios, crowd monitoring on
demand, transportation, and fixing broken communication
lines, thus allowing for cyber-physical experimentation with
realistic objectives. UnA sets itself apart from earlier work by
providing a complete, low-cost, and generic CPS testbed; such
testbed is different from earlier work which either focuses on
UAV control or application specific deployments.

Our main contribution with UnA is providing a complete
and generic wireless testbed that allows for the detection and
recognition of real objects, which are treated as input to the
CPS. The system then uses the quadcopters to carry out CPS
specific tasks, depending on the application superimposed on
the system, and provides the sensory information from the
UAV’s array of sensors as the CPS output. Additionally, we
provide a vision-based localization solution that uses color
tags to identify different objects in varying light intensity
environments. This localization technique is suitable for many
deployments, especially with indoor scenarios or deployments.
We use that technique to control the UAVs within the specified
area of interest. Finally, the UnA architecture is designed in a
modular fashion so that different parts (e.g. localization and
control) can be replaced or improved depending on the deploy-
ment environment (e.g. using GPS for outdoor deployments).

To demonstrate the ease of use and potential behind UnA,
we deploy several cluster-based target coverage algorithms
[4], [5] on it. We share our experience implementing these
algorithms on the system in two different scenarios running in
varying environmental contexts.

The rest of the paper is organized as follows, Section II
presents earlier work on UAV testbeds and CPS testbeds. Then,
we present the UnA architecture in Section III. Our experience
with running UnA in two different scenarios is presented in
Section IV. Finally, we conclude the paper and discuss future
work in Section V.

II. RELATED WORK

Several research groups have recently developed quadcoptor
testbeds [6]–[9]. The GRASP testbed [9] uses off-the-shelf
high-end Ascending Technologies Hummingbird quadcopters
to demonstrate multirobot control algorithms. The ETH Flying
Machine Arena [7] uses modified Hummingbird quadcopters
to demonstrate several acrobatic and athletics control maneu-
vers. A testbed was developed by University of Colorado,
Boulder for testing ad-hoc networking scenarios [10]. This
testbed uses UAVs which were deployed in a 7 km2 area to
test different operation conditions of the DSR protocol. The
work in [6] shows the development of a low-cost UAV testbed
using Goldberg Decathlon ARF model airplane. The work
aims at showing the design and development of hardware and
software components to produce low-cost UAVs. The work in
[11] presents an approach for controlling a UAV through its
front camera.

Unlike other UAV-based testbeds, UnA’s architecture is
more concerned with abstracting the control of UAVs rather
than improving it. UnA presents an architecture that provides
default components and facilitates replacing any of them to
test its impact on the overall performance of the system. To
that end, AR Drones were selected as the UAVs to be used.
We prefer using quadcopters to fixed-winged airplanes due to
their maneuverability especially in highly constrained spaces
(e.g. indoors) in addition to exploiting their ability to hover.
We specifically adopt the AR Drones, mainly built as a gaming
platform, because they are extremely cheap relative to other
potential devices 1 In addition, these UAVs come with a large
array of sensors and a widely supported open source API to
control the drone and obtain sensory information for its sensors
(the specifications of the AR Drone are better described in
Section III).

From a different perspective, CPS testbeds presented in
[3], [12], like UnA, introduce Unmanned Ground Vehicle
(UGV) as affordable solutions to allow CPS researchers to
perform physical experiments. However, both testbeds rely
on UGVs which typically have limited deployment options
due to the ground surface nature that’s required for UGVs to
move on. UnA relies on UAVs which have fewer constraints
regarding deployment areas and are suitable for a wider range
of applications.

III. UP AND AWAY

In this section, we introduce the design and implementation
of UnA. We start with our design goals followed by a
description of our architecture. We then discuss the details of
how UnA handles targets and UAV localization, UAV control,
CPS processing and communication.

A. Design Goals

The development of UnA is motivated by the need for low-
cost, easy to deploy experiments for various CPS applications.

1An AR Drone 2.0 costs $300 while an AscTec Hummingbird costs around
$4500 .

Master
camera

Target 1

Images
of area

of interestUAV Localization

UAV CPS Optimizer

WLAN 1

W
LA

N
 0

UAV Node Modules

Targets/Drones
Localization

Central CPS Optimizer

Central Node Modules

Experiment Admin GUI

Control Network

Coordination
Network

U
n

A
 Sim

 A
PI

UAV Controller Drones Central
Controller

Target 2

Target 3

Target 4
Target 5

Fig. 1. UnA Architecture

Thus, UnA’s architecture is designed with the following goals
in mind:

1. Multidisciplinary nature of CPS experiments: The de-
velopment of CPS experiments requires awareness of several
fields including hardware design, control systems, and soft-
ware systems development [1]. This poses significant chal-
lenges for developing realistic experiments for such systems.
UnA was designed with this unique feature of CPS in mind
and therefore the UnA modules are extensible to support the
development and replacement of any of the CPS’s components.

2. Support of large scale experiments: CPS experiments
with a large number of physical nodes requires the testbed to
support different communication models between the nodes.
In addition, the processing power required to optimize the
overall state of the system can grow exponentially with the
number of nodes. The modularity in UnA enables executing
different component implementations on different machines to
scale with the application needs and testbed size.

3. Seamless control of the UAVs: UnA aims at reducing
the complexities in CPS experiments design incurred by the
automatically operated mechanical components of the system.
We accomplish this by abstracting the control algorithms and
hardware design of those physical components from the CPS
application developer, which enables people to focus more
on the ”cyber” related challenges. In addition, autonomous
control of off-the-shelf UAVs is a difficult task [7], [9]. Thus,
UnA relies on the easy to use AR Drone API and extends it
to use way-point navigation instead of controlling the angular
rotations (i.e. roll, yaw and gaz) of the UAV.

B. UnA Architecture

Figure 1 depicts the basic UnA architecture. UnA allows
UAVs to communicate with each other, process sensory infor-
mation locally and act accordingly (i.e. control itself). It also
provides a base node that monitors the behavior of all UAVs.
Moreover the central node can handle processing intensive

tasks that UAVs off-load to it. The system is comprised of the
two following major modules.

1. UAV Node Modules are responsible for obtaining and
processing information about the drone and the environment’s
state, calculating the drone’s corresponding objectives accord-
ingly, as well as controlling the drone’s motion to achieve
these objectives. UnA is built on top of the Parrot AR Drone
2.0 [13]. The AR Drone is a quadrotor helicopter that is
electrically powered with two cameras: a front 720p camera
with a 93◦ lens and a vertical QVGA camera with a 64◦ lens.
These drones are controlled by an external computer through
WiFi, and are equipped with an onboard ARM Cortex A8
processor with 1 Gbit RAM that runs a Linux 2.6.32 Busybox.
The onboard computing machine is responsible for collecting
and reporting the state of the drone to an external computer
that controls the drone. The AR Drones are relatively cheap,
easy to program and comes with a firmware that provides
assisted maneuvers that facilitates motion control tasks such
as hovering.

2. Central Node Modules are responsible for monitoring
the state of each drone, manually controlling the drone, and
providing part of the environment state information to the
drones. Due to the limited processing capacity of current off-
the-shelf UAVs, UnA’s architecture enables off-loading some
of the processing tasks from the UAVs to the central node
to enable real time responses to changes in the environment.
The Experiment Admin GUI displays the state information
of the different UAVs. It also supports the manual control
of the UAVs for emergency cases. The main purpose of
UnA’s architecture is to support the rapid development of
CPS experiments that use UAVs as their Physical part. While
UnA can be extended and customized for different CPS
applications, we assume that simulation code was already
developed by the experiment administrator. Thus, the central
node supports communication between its different modules
with other applications through sockets. The UnA Sim API
provides the appropriate wrappers to allow the simulation
code to interface with UnA to bring the simulations to life
by off-loading all the UAV Node Modules functionalities to
the simulation engine through the central node.

For the remainder of this section, we explain the different
layers of the UnA architecture according to the color coding
in Figure 1.

C. UAV and Target Localization

The UnA architecture supports different approaches for
localization: 1) A Parrot Flight Recorder GPS module and
2) Using a master camera mounted at a high point to track
the location of the drone. While the first approach is straight
forward, it doesn’t work in indoor environments. For our
experiments in Section IV, we focus on indoor environments,
hence, vision-based localization will be used.

Multiple UAV tracking using computer vision with multiple
cameras is a challenging task to implement [14]. For deploy-
ment flexibility, we propose a simpler approach that uses a
single camera, mounted at a high point in the center of the

(a) Image filtered using red filter. (b) Centroid of red objects marked
with blue dots.

Fig. 2. The process of detecting red colored objects in master camera footage.

area of interest, to track the drones by tagging each drone
with a distinct color tag. Tracking objects of a certain color
could be implemented using OpenCV [15]. This approach
accommodates tracking more targets by adding more colors,
if target identity matters, or having one color for all targets,
if identification is not an objective.

While earlier work in UAVs control [7], [9] relies on Motion
Capturing Systems (MCS) for tracking UAVs, we chose the
single camera approach as a much cheaper alternative that
provides reasonable accuracy in the 2D plane and relies on the
drone’s altitude sensor to obtain input on the third dimension2.
We further study persistent color tags identification in varying
color intensity conditions.

1) Implementation: The UnA localization system relies
on color tags that are attached to each of the targets and
drones. While differentiating between the identities of drones
is important, differentiating between the identities of targets is
not of the same significance for most of the target coverage
experiments. Thus, each drone is tagged with a unique color
tag and all targets are given the same color tag.

The localization algorithm relies on a color filtering al-
gorithm that isolates spots with a certain color. Thus, the
algorithm takes as an input the number of colors to search
for, and the filter parameters for each color. The algorithm
pulls images from the central PTZ camera and applies each
of the filters. The output of the algorithm is the number of
spots for each color and the centroid of each of the spots.
Figure 2 shows the output of the filter for red parameters and
the identified centroid of these red spots.

2) Accommodating Changes in Light Intensity: One of the
constraints forced by the nature of our deployment area is the
effect of having sun light as part of the illumination of the
area. In particular, as the sun’s position changes over the day,
the intensity of colors changes as well. This makes persistence
detection of colors using static filters much more challenging.
Figure 3 shows the effect of changing light intensity on the
color tags we picked, over different times of the day.

To determine the colors that can be detected consistently
throughout the day using static filtering, several experiments
were conducted with different color models (i.e. RGB and
HSV), different colors, and different locations (as in Figure 3).
Our results showed that Blue, Red, Green, and Yellow are the

2While PTZ cameras can cost several thousand dollars, MCS costs up to
tens of thousands of dollars.

Fig. 3. The view from the master camera at different times of day showing
gradual changes in light intensity.

Color 12:30 - 3:00 PM 3:00 - 4:30 PM 4:30 - 5:00 PM
Red 0% 0% 0.3%
Yellow 0% 0% 0.2%
Green 0% 0% 0%
Pink 9.5% 37.8% 10.14%
Blue 0% 0% 0%
White 0% 6.8% 48.3%

TABLE I
PERCENTAGE OF COLOR MISS DETECTION OF EACH COLOR USING A

STATIC COLOR FILTER OVER THE PERIOD OF CHANGING LIGHT INTENSITY.

colors that were most persistently detected irrespective of the
time of day as shown in Table I. These would represent the
colors recommended to be used for tagging the drones and
targets.

D. UAV Control

The UAV Controller and Drones Central Controller are
responsible for moving the drone to a specific X, Y coordinates
with a certain orientation within the area of interest. Due
to our choice of AR Drones, the controller requires four
different threads to control and query the drone’s sensors: a)
AT Commands thread, b) NAVDATA Thread, c) Video Client
Thread, and d) Coordinate Controller Thread.

a) AT Commands Thread: AR Drones are controlled
through the AT commands protocol which is sent to the drone
over WiFi. The AT commands are encoded as 8-bit ASCII
characters that start with ”AT*” followed by the command
name. AR Drones require receiving an average of 30 AT
commands per second for proper control. Thus, a thread is
forked to dispatch AT commands to the drone. This thread
communicates with other threads to update the parameters it
sends to the drone accordingly.

b) NAVDATA Thread: UnA relies on several of the
sensory readings captured by the sensors on the drone (e.g.
altitude sensor and compass). This information, called navdata,
are sent to the controller from the drone approximatively 15

Start

Take off &
Calibrate zero

orientation

Rotate to the zero
orientation

Wait For New
Command

Move to X Dest
along X-Axis

Move to Y Dest
along Y-Axis

Motion Command

Land Command
Land

End

Fig. 4. A UAV’s control loop.

times per second in demo mode, and 200 times per second in
full mode.

c) Video Client Thread: Videos from the front and bot-
tom cameras are the most important outputs for any CPS using
the drones. Images from this video stream are sent to the
controller via WiFi. Then, the received images are decoded
and saved for further processing by the CPS.

It is important to note that all drones that are part of a
UnA experiment stream their video feeds to the controller
simultaneously. This introduces a processing bottleneck due
to the decoding overhead of each of the received frames.
This overhead is addressed by reducing the frame rate of the
streamed videos from each drone. This can also be adapted
dynamically according to the variation in the event being
covered as well.

d) Coordinate Controller Thread: Quadcopters can move
in any direction with any orientation which requires accurate
settings of the yaw, roll, and pitch angular speeds. However,
the simultaneous control of those angles is problematic due to
faulty sensor readings and inaccurate rotors due to the cheap
hardware used (we present more details on hardware limita-
tions in Section IV-D). Hence, complex control algorithms are
required to perform such complex motion patterns. Thus, we
choose a simple controlling method to avoid setting all three
angular speeds. Figure 4 summarizes the algorithm controlling
the drone motion.

To reach a certain coordinate, the Coordinate Controller
Thread first needs to determine in which quarter does the
destination fall with respect to the drone’s location. This allows
for having a clue whether the drone will be moving to the left
or right and whether it will be moving to the front or back.
Then, the orientation of the drone is set to 90◦w.r.t. the x-y
plan of the area of interest. The change in orientation uses the

Start

Determine Motion Direction

Move along axis in
calculated direction

Tolerance away from
Destination ?

Add angular speed
in opposite direction

No

Yes
End

Any drifting detecting
along other axis ?

Yes

No

Fig. 5. Control loop for motion over an axis.

compass for feedback. The controller then moves the drone
along the x-axis to its specific coordinate then along the y-
axis after which the drone is finally rotated to the specified
orientation. This control algorithm obtains feedback from the
UAV localization module and the UAV internal compass in
order to actuate any errors in placing the drone due to its
inertia. Figure 5 summarizes the algorithm controlling motion
along each axis.

We benchmarked the UnA’s placement error by placing the
drone arbitrarily and then moving it to a certain location over
14 times. Figure 6 shows the CDF of the error in placing the
drone (i.e. the distance between the drone’s actual location
and its intended location). These inaccuracies could lead to an
overall placement error with a median value of approximately
50cm in a 10m x 10m area. The effects of these placement
inaccuracies are significantly increased due to the small size
of the deployment area. Nonetheless, the current state of UnA
is useful for many applications and particularly as the area of
interest grows larger.

E. CPS Optimization

The UAV CPS Optimizer module is responsible for updating
the objective (i.e. location and orientation) of the drone after
obtaining updates on the state of the drone and the environ-
ment from the drone’s sensors, other drones, and the central
node. This module has three modes of operation: 1) distributed
mode, 2) central mode and 3) emulation mode. In the dis-
tributed mode, a distributed objective function is used where
each UAV calculates its own new objectives after each update,
which is suitable for lightweight distributed algorithms. In the
central mode, the UAV CPS Optimizer reports the updates to
the Central CPS Optimizer which calculates the new objectives
based upon updates from all UAVs. Finally, in the emulation
mode, the UAVs implement a distributed objective function

50 100 150
0

0.2

0.4

0.6

0.8

1

Placement error (cm)

P
ro

b
a
b
ili

ty

Fig. 6. CDF of distance error in drone placement.

but off-load its calculations to the central node to meet the
realtime responsiveness requirements.

F. Control and Coordination Networks

One of our design choices is to separate the intercommu-
nication between the UAVs and the communication between
each UAV and the central node into two different networks.
This design choice is motivated by two reasons: 1) While
communication between UAVs can be established in an ad-
hoc, unreliable fashion, communication between the UAVs
and the central nodes should be using an infrastructure that
is connected to the UAVs at all times, 2) AR Drone 2.0 [13]
provides an SDK for monitoring and controlling the UAVs that
requires continuous communication between the UAVs and a
central node. We rely on that SDK to facilitate the different
tasks of the Central Node Modules.

For the implementation of the Control Network, we use the
built-in WiFi card but changed its configuration to work as
a client instead of as an access point, which is its default
configuration. This way all nodes can connect to the central
node through a WiFi infrastructure. As for the Coordination
Network, we plug a WiFi dongle into the drone, compile the
dongle’s driver to work on the ARM-based Busybox, and
install the driver on the drone. The dongle is then configured
to work in Ad-Hoc mode and join the drone’s SSID as soon
as its visible.

IV. EXPERIENCE USING UNA

In this section, we demonstrate the steps of bringing a
sample CPS simulation to life using UnA in two different
scenarios within a mobile-camera-based surveillance system.
The system’s objective is to maximize the number of targets
covered by a set of mobile cameras. For the rest of the section,
we will show the different steps of implementing the proposed
CPS using UnA.

A. Target Coverage System Description

The implemented CPS is a computationally efficient heuris-
tic for mobile camera placement and orientation for the
coverage of a set of localized targets. The proposed algorithm

Fig. 7. The top left corner is the view from the UAV while the bottom left
corner is the view from the master camera. Targets are circled in red when
they appear in the view of either cameras.

considers the problem of finding the minimum number of
cameras to cover a high fraction of a set of targets as a
clustering problem. We propose several variations for the
clustering approaches in [4], [5], [16]. The coverage algorithm
is a central algorithm whose inputs are the location of all
targets and the mobile cameras, and its output is a set of
location and orientation parameters for all mobile cameras. It
is important to note that for this application, target identity is
not important. Thus, we choose the color green for all targets.

All required computations were offloaded to the central
node because the Target Coverage System doesn’t require
any processing to be made on the drones. The MATLAB
implementation of simulation algorithms are integrated into
UnA through socket communication between the UnA process
and the simulation MATLAB code, requiring minimal coding
overhead.

B. Experimental Setup

For both scenarios, we use an Axis 213 PTZ Network
Camera as the master camera. The master camera is connected
through ethernet to the Central Node, a Lenovo ThinkPad
T430. Two Parrot AR Drones 2.0 are also used. The drones are
connected to the central node through WiFi. The drones’ wire-
less configuration are adjusted to work in managed mode
and connect to a central WiFi access point. Green tiles are
used as static targets and remotely controlled toy cars are used
as mobile targets.

C. Experimental Scenarios

Two scenarios are shown in this paper to show the versatility
of scaling UnA deployments in terms of coverage area, number
of drones, and nature of targets.

1) Scenario 1: Mobile Targets Coverage:

http://youtu.be/OZhdTNw5eXM

The area of deployment is 1.25 by 2.1 meters (4.1 by 6.8
feet). Figure 7 shows different snapshots of UnA. The scenario
of this experiment is to first have the two targets (circled in

Fig. 8. Layout of the second deployment area showing drones in green circles
and the master camera in the red circle.

red) positioned in a certain configuration and have the UAV
visually cover them. Then, move the targets and make the UAV
reposition itself to cover the targets.

The first two snapshots show the UAV moving itself to cover
the targets in their initial configuration. The third snapshot
shows the UAV covering both targets (i.e. both targets are
within the view of the drone’s camera). The fourth snapshot
shows the UAV after moving to cover the drones in their
second configuration.

2) Scenario 2: Target Coverage using Multiple Cameras:

http://youtu.be/9pDZtdtGm2g

The area of deployment is 5.3m by 4.7m (17.3ft by 15.4ft).
Figure 8 shows the layout of the testbed. The scenario of the
experiment is to first have two targets which will require one
drone to be dispatched to cover them (Figure 9(a)). Then, two
more targets are introduced and the second drone is dispatched
to cover them (Figure 9(b)). The maximum coverage range of
the drones was set to around 1 m (i.e. Rmax = 1 [16]) so as
to force the algorithm to dispatch two drones to cover the four
targets. Note that the maximum range of the drone’s camera
is, typically, much larger than 1 m but this parameter was set
to demonstrate a multiple-drone scenario.

(a) Step 1: two targets covered by one drone.

(b) Step 2: four targets covered by two drones.

Fig. 9. Screen shots of an experiment with two drones showing progress
between the two steps of the experiment.

D. Limitations

Several limitations were encountered while using the AR
Drones including repeated failures in the built in sensors (e.g.
compass and altitude sensors). These failures cause serious
problems in controlling the rotation and altitude of the drone.
Furthermore, errors in drone placement and maneuvering in-
herently appear due to the simplicity of the control algorithms
we adopt as well as some recurring errors in assisted maneu-
vers provided by the AR Drone’s firmware (e.g. spontaneous
rotations, unstable hovering, and sudden changes in drone
altitude). These errors affect the experiments reproducibility
to some extent.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced Up and Away: a test bed
that enables bringing individual CPS components together into
full scale experiments allowing for the evaluation of those
different components under realistic conditions with minimal
cost and deployment overhead. We have shown how our sys-
tem, UnA, reduces the cost and overhead of CPS experimental
deployments, enables a large range of CPS experiments to
be built on it, and is modular in a way that allows for the
development and integration of new components. We have
also shown how using off the shelve drones come with some
limitations, along with the lack of accuracy in UAV placement.
We plan to address these limitations by further adding a
RaspberryPi board with several sensors mounted on it to

provide more sensitive sensory readings that would allow for
better control of the drones.

Our future plans for UnA include larger deployments with
three drones or more. We also plan to deploy the Click
Modular router on the UAVs to allow for a more extensive
evaluation of ad-hoc communication protocols between the
UAVs. Furthermore, we plan to extend the ”physical” compo-
nents abstraction to allow the seamless integration of several
other mechanical systems (e.g. ground vehicles). We also plan
to explore other approaches for UAV tracking (e.g. RFID
tracking).

VI. ACKNOWLEDGEMENT

This work was made possible by NPRP grant # 4-463-2-
172 from the Qatar National Research Fund (a member of
Qatar Foundation). The statements made herein are solely the
responsibility of the authors.

REFERENCES

[1] R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical
systems: the next computing revolution,” in Proceedings of the 47th
Design Automation Conference. ACM, 2010, pp. 731–736.

[2] L. Sha, S. Gopalakrishnan, X. Liu, and Q. Wang, “Cyber-physical
systems: A new frontier,” in Machine Learning in Cyber Trust. Springer,
2009, pp. 3–13.

[3] C. Fok, A. Petz, D. Stovall, N. Paine, C. Julien, and S. Vishwanath,
“Pharos: A testbed for mobile cyber-physical systems,” Univ. of Texas
at Austin, Tech. Rep. TR-ARiSE-2011-001, 2011.

[4] A. Neishaboori, A. Saeed, K. Harras, and A. Mohamed, “On target
coverage in mobile visual sensor networks,” in MobiWac, 2014.

[5] ——, “Low complexity target coverage heuristics using mobile cam-
eras,” in IEEE MASS, 2014.

[6] D. Jung, E. Levy, D. Zhou, R. Fink, J. Moshe, A. Earl, and P. Tsiotras,
“Design and development of a low-cost test-bed for undergraduate
education in UAVs,” in Decision and Control, 2005 and 2005 European
Control Conference. CDC-ECC’05. 44th IEEE Conference on. IEEE,
2005, pp. 2739–2744.

[7] S. Lupashin, A. Schollig, M. Sherback, and R. D’Andrea, “A simple
learning strategy for high-speed quadrocopter multi-flips,” in Robotics
and Automation (ICRA), 2010 IEEE International Conference on. IEEE,
2010, pp. 1642–1648.

[8] M. Valenti, B. Bethke, D. Dale, A. Frank, J. McGrew, S. Ahrens,
J. P. How, and J. Vian, “The mit indoor multi-vehicle flight testbed,”
in Robotics and Automation, 2007 IEEE International Conference on.
IEEE, 2007, pp. 2758–2759.

[9] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The grasp
multiple micro-UAV testbed,” Robotics & Automation Magazine, IEEE,
vol. 17, no. 3, pp. 56–65, 2010.

[10] T. X. Brown, S. Doshi, S. Jadhav, and J. Himmelstein, “Test bed for
a wireless network on small UAVs,” in Proc. AIAA 3rd ”Unmanned
Unlimited” Technical Conference, Chicago, IL, 2004, pp. 20–23.

[11] J. Engel, J. Sturm, and D. Cremers, “Camera-based navigation of a
low-cost quadrocopter,” in Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on. IEEE, 2012, pp. 2815–2821.

[12] T. L. Crenshaw and S. Beyer, “Upbot: a testbed for cyber-physical
systems,” in Proceedings of the 3rd international conference on Cyber
security experimentation and test. USENIX Association, 2010, pp. 1–8.

[13] T. Krajnı́k, V. Vonásek, D. Fišer, and J. Faigl, “Ar-drone as a platform for
robotic research and education,” in Research and Education in Robotics-
EUROBOT 2011. Springer, 2011, pp. 172–186.

[14] H. Oh, D.-Y. Won, S.-S. Huh, D. H. Shim, M.-J. Tahk, and A. Tsourdos,
“Indoor UAV control using multi-camera visual feedback,” Journal of
Intelligent & Robotic Systems, vol. 61, no. 1-4, pp. 57–84, 2011.

[15] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with
the OpenCV library. O’reilly, 2008.

[16] A. Neishaboori, A. Saeed, A. Mohamed, and K. Harras, “Target coverage
heuristics using mobile cameras,” in International Workshop on Robotic
Sensor Networks, 2014.

