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ABSTRACT
Video sharing (e.g., YouTube, Vimeo, Facebook, TikTok) accounts
for the majority of internet traffic, and video processing is also foun-
dational to several other key workloads (video conferencing, vir-
tual/augmented reality, cloud gaming, video in Internet-of-Things
devices, etc.). The importance of these workloads motivates larger
video processing infrastructures and – with the slowing of Moore’s
law – specialized hardware accelerators to deliver more computing
at higher efficiencies. This paper describes the design and deploy-
ment, at scale, of a new accelerator targeted at warehouse-scale
video transcoding. We present our hardware design including a new
accelerator building block – the video coding unit (VCU) – and dis-
cuss key design trade-offs for balanced systems at data center scale
and co-designing accelerators with large-scale distributed software
systems. We evaluate these accelerators “in the wild" serving live
data center jobs, demonstrating 20-33x improved efficiency over our
prior well-tuned non-accelerated baseline. Our design also enables
effective adaptation to changing bottlenecks and improved failure
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management, and new workload capabilities not otherwise possible
with prior systems. To the best of our knowledge, this is the first
work to discuss video acceleration at scale in large warehouse-scale
environments.

CCS CONCEPTS
•Hardware→Hardware-software codesign; •Computer sys-
tems organization → Special purpose systems.
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1 INTRODUCTION
Video sharing services are vital in today’s world, providing critical
capabilities across the globe to education, business, entertainment
and more. Video is the dominant form of internet traffic, making
up >60% of global internet traffic as of 2019 [10], and continues
to grow given 4K and 8K resolutions and emerging technologies
such as augmented and virtual reality, cloud video gaming, and
Internet-of-Things devices. Recently, the COVID-19 pandemic has
further amplified the importance of internet video platforms for
communication and collaboration: e.g., medical professionals us-
ing video platforms to share life-saving procedures or increased
YouTube usage (>15% of global internet traffic) [11].

While the computational demand for video processing is ex-
ploding, improvements from Moore’s Law have stalled [27]. Future
growth in this important area is not sustainable without adopt-
ing domain-specific hardware accelerators. Prior work on video
acceleration has focused primarily on consumer and end-user sys-
tems (e.g., mobile devices, desktops, televisions), with few video
products targeting data centers [37]. Introducing video transcoding
accelerators at warehouse-scale [4] is a challenging endeavor. In
addition to the high quality, availability, throughput, and efficiency
requirements of cloud deployments, the accelerator must support
the complexity of server-side video transcoding (i.e., plethora of
formats and complex algorithmic and modality trade-offs), deploy-
ment at scale (i.e., workload diversity and serving patterns), and
co-design with large-scale distributed systems.

In this paper, we address these challenges. To the best of our
knowledge, this is the first work to discuss the design and deploy-
ment of warehouse-scale video acceleration at scale in production.
Specifically, we make the following key contributions.

First, we present a new holistic system design for video accelera-
tion, built ground up for warehouse-scale data centers, with a new
hardware accelerator building block – the video coding unit (VCU)
– designed to work in large distributed clusters with warehouse-
scale schedulers. We detail our carefully co-designed abstractions,
partitioning, and coordination between hardware and software, as
well as specific design and engineering optimizations at the levels
of hardware blocks, boards, nodes, and geographically-distributed
clusters. For example, VCUs implement a sophisticated acceleration
pipeline and memory system, but are also designed with support
for stateless operations and user-space programmability to work
better with data center software. Similarly, our clusters are carefully
optimized for system balance under increased diversity and density,
but also support rich resource management abstractions and new
algorithms for work scheduling, failure management, and dynamic
tuning. Additionally, we discuss our approach to using high-level
synthesis to design our hardware for deeper architecture evaluation
and verification.

Second, we present detailed data and insights from our deploy-
ment at scale in Google including results from longitudinal studies
across tens of thousands of servers. Our accelerator system has

an order of magnitude performance-per-cost improvement (20x-
33x) over our prior well-tuned baseline system with state-of-the-art
CPUs while still meeting strict quality, throughput, latency, and
cost requirements across a range of video workloads (video sharing,
photos/video archival, live streaming, and cloud gaming). We also
present results demonstrating how our holistic co-design allows
for real-world failure management and agility to changing require-
ments, as well as enables new capabilities that were previously not
possible (increased compression, live video applications, etc).

The rest of the paper is organized as follows. Section 2 provides
background on why data center scale video transcoding is a chal-
lenging workload to accelerate. Section 3 discusses our system
design and implementation, with specific focus on new insights
around system balance and hardware-software co-design specific
to video acceleration at warehouse-scale. Section 4 presents mea-
surements from at-scale deployment in our production data centers,
Section 5 discusses related work, and Section 6 concludes the paper.

2 WAREHOUSE-SCALE VIDEO PROCESSING
In this section, we discuss key aspects of warehouse-scale video
processing platforms that make it challenging for hardware accel-
eration. We also describe how data center transcoding differs from
consumer devices.

2.1 Video Transcoding: Workload Challenges

APlethora ofOutput Files:Video sharing platforms like YouTube
enable a user to upload a video they created, and lets others reliably
view it on a variety of devices (e.g., desktop, TV, or mobile phone).
The video sharing platform (Figure 1) includes computing and stor-
age in data centers and streaming via a content-delivery network
(CDN) [15]. In this paper, we focus on the former two data center
components. Given the large range of screen sizes/resolutions, from
8K TVs down to low-resolution flip phones, most video platforms
will convert each uploaded video into a standard group of 16:9
resolutions1. These video files are computed and saved to the cloud
storage system and served as needed. This production of multiple
outputs per input is a key difference between a video sharing
service and a consumer video application like video chat.

video

Creator Viewer
Content
Delivery
Network

Cloud
Storage

Transcoding

Internal Network→InternetCloud Data Centers

Figure 1: Video platform functional diagram

Since lower resolutions have smaller file sizes and can be up-
scaled on a viewer’s device, the clientmay adapt to limited/changing
bandwidth by requesting a lower resolution (e.g., adaptive bitrate
or ABR [7, 16, 48]).

1For example, 256 x 144, 426 x 240, . . . , 3840 x 2160 (a.k.a. 4K), 7680 x 4320 (a.k.a. 8K)).
These are usually shortened to just the vertical dimension (e.g. 144p, 240p, . . . , 2160p,
and 4320p).
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A Plethora of Video Formats: Compressing video files makes
them much smaller, yielding storage and network bandwidth ben-
efits. Video coding specifications define how to decompress a com-
pressed video sequence back into pictures and Codecs are imple-
mentations of these specifications. Popular coding specifications
include H.264/AVC [28], VP9 [21], and AV1 [12]. High compression
is achieved using combinations of prediction, transformation, quan-
tization, entropy coding, and motion estimation [22, 24, 55]. Newer
specifications use more computation for higher compression gains.

While some devices (laptops, desktops) keep up with the latest
specifications via software decoders (running on general-purpose
processors), others (TV, mobile) use hardware (fixed-function) de-
coders for their power efficiency and speed and thus continue to
stick with older specifications. Therefore, to leverage new specifica-
tions when the viewer’s device supports it and use older ones when
the device does not, videos must be encoded in a plethora of dif-
ferent formats. Combined with the multiple resolutions described
above, this translates to a majority of work in the video process-
ing platform spent on transcoding. Contrast this with classic video
broadcast (TV) where video is encoded in one format and resolution
and all playback devices support that same format/resolution!

Algorithmic Trade-Offs in Video Transcoding: Figure 2a
shows the transcoding process by which a video is decoded from
one format into raw frames, scaled to the output resolution and then
encoded into another, potentially different, format, typically with
higher compression settings than the original consumer encoder.
Video sharing platforms must optimize these trade-offs to ensure
that users receive playable and high quality video bitstreams while
minimizing their own computational and network costs.

Encoding is a computationally hard search problem often taking
many orders-of-magnitude longer than decoding, involving trade-
offs between perceptual quality, resultant bitrate, and required
computation [55]. The encoder exploits redundancy within and
across frames to represent the same content in fewer bytes. The
high compute cost is due to the large search space of encoding
parameters, which is a combination of the resolution, motion, and
coding specification. New compression specifications grow the
search space by providing additional tools that the encoder can
apply to better express the redundancy in video content in fewer
bits.

Another key parameter to improve video quality and/or bitrate is
the use of non-causal information about the video frame sequence.
This leads to a choice of one-pass or two-pass algorithms used in
low-latency, lagged, or offline modes. The lowest-latency encoding
(e.g., videoconferencing, gaming) is low-latency, one-pass encoding
where each frame is encoded as soon as available but with limited
information on how to allocate bits to frames. In two-pass encoding,
frame complexity statistics are collected in the first pass and used to
make frame type and bit allocation decisions in the second pass [61]
over different timewindows. Two-pass encoding can be additionally
classified as below.

• Low-latency two-pass has no future information but is still
able to use statistics from the current and prior frames to
improve decisions on frame type and bit allocation.

Decode Raw 
Frame

Scale Raw 
Frame

Encode videovideo

(a) Single-output transcoding (SOT) pipeline

Decode
Scale Raw 360p Encode

Scale Raw 240p Encode
Scale Raw 144p Encode

EncodeRaw 480p
video 480p

video 360p

video 240p

video 144p

video 480p

(b) 480p multiple-output transcoding (MOT) pipeline

Figure 2: Data center video transcoding patterns

• Lagged two-pass encoding has a window of statistics about
future frames and allows for bounded latency (e.g., for live
streams).

• The best quality is offline two-pass (e.g., used in large-scale
video services like YouTube and Netflix) where frame sta-
tistics from the entire video are available when running the
second pass.

Finally, advanced encoding systems [7, 33] may do multiple com-
plete passes of any of the above encoding schemes combined with
additional analysis (e.g., rate quality curves for individual videos at
multiple operating points) to produce better quality/compression
trade-offs at additional computational cost.
Chunking and Parallel Transcoding Modes: The video pro-
cessing platform is designed to leverage warehouse infrastructure
to run as much in parallel as possible. Transcoders can also shard
the video into chunks (also known as closed Groups of Pictures, or
GOPs) that can each be processed in parallel [17]. The transcoder
can perform either single-output transcoding (SOT) or multiple-
output transcoding (MOT). As shown in Figure 2a, SOT is a straight-
forward implementation of a transcoder service, simply reading
an input chunk, decoding it, and then encoding a single output
variant (possibly after scaling). A separate task must be used for
each resolution and format desired.

MOT is an alternative approach where a single transcoding task
produces the desired combination of resolutions and formats for
a given chunk (Figure 2b). The input chunk is read and decoded
once, and then downscaled and encoded to all output variants in
parallel. This reduces the decoding overheads and allows efficient
sharing of control parameters obtained by analysis of the source
(e.g., detection of fades/flashes). MOT is generally preferred to SOT,
as it avoids redundant decodes for the same group of outputs, but
SOT may be used when memory or latency needs mandate it.

2.2 Warehouse-Scale Processing: Challenges
Multiple Video Workloads and Requirements: YouTube’s
video processing platform [7, 34] currently supports multiple video-
centric workloads at Google: (1) YouTube itself that handles uploads
of multiple hundreds of hours of video every minute, (2) Google
Photos and Google Drive with a similar volume of videos, and
(3) YouTube Live with hundreds of thousands of concurrent streams.
These services differ in their load and access patterns. Their end-to-
end latency requirements also vary widely, from Live’s 100 ms to
video upload’s minutes to hours. As discussed above, spreading the
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work across many data centers around the world helps distribute
the load and meet latency requirements.

Video Usage Patterns at Scale: As with other internet media
content [25], video popularity follows a stretched power law dis-
tribution, with three broad buckets. The first bucket – the very
popular videos that make up the majority of watch time – rep-
resents a small fraction of transcoding and storage costs, worth
spending extra processing time to reduce bandwidth to the user.
The second bucket includes modestly watched videos which are
served enough times to motivate a moderate amount of resources.
And finally, the third bucket includes the long tail, the majority of
videos that are watched infrequently enough that it makes sense to
minimize storage and transcoding costs while maintaining playa-
bility. Note that old videos can increase in popularity and may need
to be reprocessed with a higher popularity treatment well after
upload.

Data Center Requirements: Designing video transcoding ASICs
for the data center can be fundamentally different than design-
ing for consumer devices. At the warehouse-scale, where many
thousands of devices will be deployed, there is an increased focus
on cost efficiency that translates into a focus on throughput and
scale-out computing [4]. The “time to market” also becomes criti-
cal, as launching optimized products faster can deliver significant
cost savings at scale. Additionally, unlike consumer environments
where individual component reliability and a complete feature set
are priorities, in a warehouse-scale context, the constraints are
different: fallback software layers can provide infrequently needed
features and reliability can be augmented by redundant deploy-
ments. Also, at large scale, testing and deploying updates can be
highly disruptive in data centers, and consequently systems need
to be optimized for change management.

Data Center Schedulers: One key characteristic of warehouse-
scale designs is the use of a common software management and
scheduling infrastructure across all computing nodes to orchestrate
resource usage across multiple workloads (e.g., Google’s Borg [59]).
This means that the video processing platform is closely designed
with the warehouse-scale scheduler. Processing starts with identi-
fying what output variants need to be generated for a given video
based on its characteristics and the application (video sharing, stor-
age, streaming, etc.). Based on the required output variants, an
acyclic task dependency graph is generated to capture the work to
be performed. The graph is placed into a global work queue system,
where each operation is a variable-sized “step” that is scheduled on
machines in the data center to optimize available capacity and con-
currency. The step scheduling system distributes the load, adapting
to performance and load variations as well as service or infrastruc-
ture failures. The video system also orchestrates the parallelism
from chunking discussed earlier: breaking the video into chunks,
sending them to parallel transcoder worker services, and assem-
bling the results into playable videos. These kinds of platforms also
operate at a global scale and thus the platform is distributed across
multiple data centers. A video is generally processed geographically
close to the uploader but the global scheduler can send it further
away when local capacity is unavailable.

3 SYSTEM DESIGN
Summarizing the discussion above, transcoding is the most impor-
tant component of data center video platforms but poses unique
challenges for hardware acceleration. These include being able to
handle and scale to a number of different output resolutions and
formats, as well as handling complex algorithmic trade-offs and
quality/compression/computing compromises. These challenges are
compounded by attributes of warehouse-scale system design: inter-
and intra-task parallelism, high performance at low costs, ease of de-
ployment when operating at scale, co-ordinated scheduling and fail-
ure tolerance. Taken together, cloud video workloads on warehouse-
scale computers are very different from their consumer counter-
parts, presenting new infrastructure challenges around throughput,
quality, efficiency, workload diversity, reliability, and agility.

In response to these challenges, we designed a new holistic sys-
tem for video acceleration, built ground-up for data-center-scale
video workloads, with a new hardware accelerator building block –
a video coding unit (VCU) – co-designed to work in large distributed
clusters with warehouse-scale schedulers. Core to our solution is
hardware-software co-design, to architect the system to scalably
partition and optimize functionality at individual levels – from in-
dividual hardware blocks to boards, nodes, and geographically-
distributed clusters, and across hardware, firmware, and distributed
systems software – with appropriate abstractions and interfaces
between layers. We follow a few key high-level design principles in
optimizing for the distinct characteristics and constraints of a data
center deployment:
Globally Maximize Utilization: Given power and die-area con-
straints are more relaxed, our data center ASICs are optimized
for throughput and density, and multi-ASIC deployments amor-
tize overheads. In addition, we optimize system balance and global
work scheduling to minimize stranding (underutilized resources),
specifically paying attention to the granularity and fungibility of
work.
Optimize for Deployment at Scale: Software deployments have
varying degrees of disruption in data centers: kernel and firmware
updates require machine unavailability, in contrast to userspace
deployments which only require, at most, worker unavailability.
We therefore design our accelerators for userspace software control.
Also, as discussed earlier, individual component reliability can be
simplified at the warehouse level: hardware failures are addressed
through redundancy and fallback at higher-level software layers.
Design for Agility and Adaptability: In addition to existing
workload diversity, we have to plan for churn as applications and
use-cases evolve over time. We therefore design programmabil-
ity and interoperability in hardware, ossifying only the computa-
tionally expensive infrequently-changing aspects of the system.
Software support is leveraged for dynamic tuning (“launch-and-
iterate”) as well as adapt to changing constraints. An emphasis on
agility also motivates our use of high-level synthesis (HLS) to take
a software-like approach to hardware design.

In the rest of this section, we describe how these principles trans-
late to specific design decisions. Section 3.1 first introduces the
holistically co-designed system. Section 3.2 discusses the design
of our VCU hardware accelerator, and Section 3.3 discusses how
the VCU and its system is co-designed to work in larger balanced
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Figure 3: Design at all scales: global system, chip, and encoder core

clusters and with the firmware and distributed software stack. Sec-
tion 3.4 discusses additional details of how we use HLS to accelerate
our design, and Section 3.5 summarizes the design.

3.1 Video Accelerator Holistic Systems Design
Figure 3a shows our overall system design. Each cluster operates
independently and has a number of VCU machines along with
non-accelerated machines. Each VCU machine has – in addition
to the host compute – multiple accelerator trays, each containing
multiple VCU cards, which in turn contain multiple VCU ASICs.
The VCU ASIC design is shown in Figure 3b and combines multiple
encoder cores (discussed in Figure 3c) with sufficient decode cores,
network-on-chip (NoC), and DRAM bandwidth to maintain encoder
throughput and utilization across our range of use-cases (i.e., MOT,
SOT, low-latency, offline two-pass).

At the ASIC level, we selected parts of transcoding to implement
in silicon based on their maturity and computational cost. The en-
coding data path is the most expensive (in compute and DRAM
bandwidth) and sufficiently stable that it was the primary candidate.
After encode, decoding is highly stable and is the next most domi-
nant compute cost, making it a natural second candidate. Much of
the rest of the system is continuously evolving, from the encoding
rate control software to work scheduling, so those areas were left
flexible. Additionally, we created a firmware and software focused
hardware abstraction that allowed for performance and quality
improvements post-deployment that will be further discussed in
Section 3.3.2.

At the board and rack levels, we chose to deploy multiple VCUs
per host to amortize overheads and make it simpler to avoid strand-
ing encoder throughput due to host resource exhaustion (i.e., VCU
hosts only serve VCU workers). This was also done because a high
density deployment fit our racking and data center deployment
approaches better than augmenting every machine in a cluster with
VCU capacity, allowing us to reuse existing hardware deployment
and management systems.

At the cluster level, we augmented our video processing platform
to account for the heterogeneous resources of the VCU in scheduling
work. Our video processing platform schedules graphs of work from
a cluster-wide work queue onto parallel worker nodes that includes
both transcoding and non-transcoding steps. Each VCU worker
node runs a process per transcode to constrain errors to a single
step. This newwork scheduler was fundamental tomaximizing VCU
utilization data center-wide, beyond just at the level of a single VCU.
As most of the ASIC area consists of encoder cores, maximizing the
encoder utilization is the key to maximizing VCU utilization. The

decoder cores are also taken into consideration, as under-utilizing
them leaves the host with unnecessary software decoding load.
Multiple-output transcoding (MOT) was considered foundational
for encoder utilization because of the benefits discussed in Section 2.
The efficiency of decoding once, scaling, and encoding an entire
MOT graph on a single VCU simplifies scheduling and reduces
resource consumption at the data center level. The typical structure
of a multi-output transcode is a single-decode and then the set of
conventional 16:9 outputs (e.g. for 1080p inputs: 1080p, 720p, 480p,
360p, 240p, and 144p are encoded). This scales down the decode
needs of the VCU by the number of outputs and generally only
doubles the encoding requirements2. Few videos require an entire
VCU for their MOT, so we designed our VCUs to perform multiple
MOTs and SOTs in parallel to boost encoder and VCU utilization.

3.2 VCU Encoder Core Design
The encoder core (Figure 3c) is the main element of the VCU ASIC
and is able to encode H.264 and VP9 while searching three refer-
ence frames. The core shares some architecture features with other
prior published work [57] – pipelined architecture, local reference
store for motion estimation and other state, acceleration of entropy
encoding – but is optimized for data center quality, deployment,
and power/performance/area targets.

Input 
Preprocessing Entropy Coding

DRAM 
Reader

Reconstruction 
& Compression

DRAM 
Writer

Motion Estimation

Rate Distortion Opt.

Partitioning

Temporal Filter

Reference 
Reading & 

Decompression
Reference Store

Figure 4: Encoder core functional pipeline

Figure 4 shows the main functional blocks in the pipeline (con-
nected by small black arrows) as well as the data flow into and
out of the reference store (connected by large gray arrows). The
basic element of the pipelined computation is either a 16x16 mac-
roblock (H.264) or a 64x64 superblock3 (VP9) – the largest square
group of pixels that a codec operates on at a time. Though the
stages of the pipeline are balanced for expected throughput (cycles
2The pixel processing requirements of a multi-output transcode approximates a geo-
metric series (e.g., 1080p is approximately 2 megapixels per frame; 720p + 480p + . . . +
144p sum to ~1.7 Mpixels).
3For simplicity, we will only talk about macroblocks in the rest of the discussion.
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per macroblock), the wide variety of blocks and modes can lead
to significant variability. To address this, the pipeline stages are
decoupled with FIFOs, and full FIFO backpressure is used to stall
upstream stages when needed.
Encoder Core Pipeline Stages: The first pipeline stage imple-
ments the classic stages of a block-based video encoding algorithm:
motion estimation, sub-block partitioning, and rate-distortion-based
transform and prediction mode selection [57, 65]. This is by far the
most memory-bandwidth-intensive stage of the pipeline, interfac-
ing heavily with the reference store (discussed below). A bounded
recursive search algorithm is used for partitioning, balancing the
coding overhead of smaller partitions against a reduction in net er-
ror. Per-codec logic selects from a number of transform/prediction
mode candidates using approximate encoding/decoding to optimize
bit rate and quality, and the number of rounds can be programmed.
High-Level Synthesis (Section 3.4) was critical to experimenting
with different algorithms and implementations.

The next stage implements entropy encoding for the output block,
decoding of the macroblock (needed for the next stage), as well as
temporal filtering for creating of VP9’s alternate reference frames.
This stage is sequential-logic-heavy and consequently challenging
to implement in hardware [45]. While entropy decoding is fully
defined by the specification, entropy encoding has many differ-
ent algorithm and implementation options, e.g. VP9’s per-frame
probability adaptation [42]. Temporal filtering is a great example
of an optimization that we added given the more relaxed die-area
constraints in a data center use case. It uses motion estimation
to align 16x16 pixel blocks from 3 frames and emits new filtered
blocks with low temporal noise. This allows for the creation of
non-displayable, synthetic alternate reference frames [6, 63] that
improves overall compression, and is a feature present in VP8, VP9,
and AV1. The temporal filter can be iteratively applied to filter more
than 3 frames, providing an additional quality/speed trade-off.

The final stage of the pipeline takes the decoded output of the
encode block and applies loop filtering and lossless frame buffer
compression. The former requires access to pixels from adjacent and
top blocks, which are stored in local SRAM line buffers. The latter
losslessly compresses eachmacroblockwith a proprietary algorithm
that minimizes memory bandwidth while staying fast enough not
to be a bottleneck. The frame buffer compression reduces reference
frame memory read bandwidth by approximately 50%.
Data Flow and Memory System: The DRAM reader block inter-
faces to the NoC subsystem, and is responsible for fulfilling requests
for data from other blocks, primarily the reference store. This block
also includes the preprocessor and frame buffer decompression logic.
Similarly the DRAM writer block interfaces to the NoC subsystem
for writes to DRAM.

The most memory-intensive element of video encoding, as noted
earlier, is in the motion estimation stage, to find blocks of pixels
from the reference frames most similar to the current block. VP9 al-
lows blocks from multiple reference frames to be combined, further
increasing the search space. Consequently, a key element of our
design is an SRAM array reference store that holds the motion search
window. A reference store of 144K4 pixels can support each pixel

4144K pixels = 768 pixels wide and 192 pixels tall. The width of 768 pixels represents a
maximum tile columnwidth of 512 pixels (8x84-pixel macroblocks) and a 128 horizontal

(macroblock) in a tile column to be loaded exactly once during that
column’s processing and a maximum of twice during the frame’s
processing5. The reference store supports LRU eviction.

Given the deterministic DRAM access pattern, our design can
deeply prefetch the needed macroblocks, resulting in high mem-
ory subsystem latency tolerance and maximizing memory-level
parallelism. Additionally, the local search memory allows for an
exhaustive, multi-resolution motion search (down to 1/8th pixel res-
olution), achieving higher throughput and better results than are
typically obtained in a software motion estimation implementation.

The architecture of the encoding core eliminates most memory
hazards, allowing for an out of order memory subsystem. In partic-
ular, all the inputs (reference buffers, input frame) are not modified
during encoding, the encoded frame is written sequentially, and the
decoded version of the newly encoded frame (which will become
a reference frame for the next frame) is also written sequentially.
The primary hazard is the use of cross-tile boundary macroblocks
for the in-loop deblocking filter, which is avoided by a memory
barrier at the end of each tile column. Consequently, each core
in our design can have dozens of outstanding memory operations
in flight. The architecture aligns accesses to the natural memory
subsystem stride and does full writes to avoid read-modify-write
cycles in the DRAM subsystem.
Control and Stateless Operation: The encoder IP block is pro-
grammed via a set of control/status registers for each operation.
All inputs – the frame to be encoded, all reference frames, other
auxiliary inputs (quantization parameter look-up tables, probabil-
ity tables, temporal motion vectors) – are stored in VCU DRAM,
as are all the outputs – the encoded frame, the updated reference
frame, temporal motion vectors and updated probability tables. This
allows the encoder cores to be interchangeable resources, where
the firmware can dispatch work to any idle core. The bandwidth
overhead from transferring state from DRAM is relatively small
compared to the bandwidth needed to load reference frames, as
discussed above. While an embedded encoder (in a camera, for
example) might prefer to retain state across frames to simplify pro-
cessing its single stream, this stateless architecture is better for a
data center ASIC where multiple streams of differing resolutions
and frame rates (and hence processing duration) are interleaved.

3.3 System Balance and Software Co-Design
We next discuss how we brought the hardware together in an opti-
mal system balance, and elaborate on the co-design across hardware
and software.

3.3.1 Provisioning and System Balance: The VCU ASIC floorplan is
shown in Figure 5a and comprises 10 of the encoder cores discussed
in Section 3.2. All other elements are off-the-shelf IP blocks6. VCUs
are packaged on standard full-length PCI Express cards (Figure 5b)
to allow existing accelerator trays and hosts to be leveraged. Each
machine has 2 accelerator trays (similar to Zhao et al. [66]), each

search window on each side (most video motion is horizontal, so search is biased in
that direction). The height of 192 pixels includes the 64-pixel macroblock and two
64-pixel windows vertically.
5For H.264, which lacks tile columns, the reference store is configured as a raster store
of 64x16 pixel blocks. By increasing the reference store to 394K pixels (2048 x 128), the
core can provide efficient encoding for up to 2048 pixel wide videos.
6The decoder cores are off-the-shelf, but SRAM ECC was added for data center use.
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Figure 5: Pictures of the VCU

containing 5 VCU cards, and each VCU card contains 2 VCUs, giving
20 VCUs per host. Each rack has as many hosts as networking,
physical space, and cluster power/cooling allow.

In terms of speeds and feeds, VCU DRAM bandwidth was our
tightest constraint. Each encoder core can encode 2160p in real-
time, up to 60 FPS (frames-per-second) using three reference frames.
The throughput scales near-linearly with reduced pixel count from
lower resolutions. At 2160p, each raw frame is 11.9 MiB, giving an
average DRAM bandwidth of 3.5 GiB/s (reading one input frame
and three references and writing one reference). While the access
pattern causes some data to be read multiple times, the lossless ref-
erence compression reduces the worst-case bandwidth to ~3 GiB/s
and typical bandwidth to 2 GiB/s. The decoder consistently uses
2.2 GiB/s, so the VCU needs ~27-37 GiB/s of DRAM bandwidth,
which we provide with four 32b LPDDR4-3200 channels (~36 GiB/s
of raw bandwidth). These are attached to six x32 DRAM chips, with
the additional capacity used for side-band SECDED ECC [26].

Other system resources to be balancedwere VCUDRAM capacity
(the 8 GiB usable capacity gave modest headroom for all workloads)
and network bandwidth (only 2/3 loaded in a pathological worst-
case). Host CPU cores, DRAM capacity, DRAM bandwidth, and PCI
Express bandwidth were also evaluated but found to be indirectly
bound by network bandwidth, needing at most 1/3 of the system
resources. Appendix A provides a more detailed discussion of these
system balance considerations.

3.3.2 Co-Design for Fungibility and Iterative Design: The software
and hardware were loosely coupled to facilitate parallel develop-
ment pre-silicon and continuous iteration post-silicon. The codec
cores in the VCU are programmed as opaque memories by the
on-chip management firmware (the firmware and driver stack are
oblivious to their content). The management firmware exposes
userspace mapped queues that expose 4 commands: run-on-core,
copy-from-device-to-host, copy-from-host-to-device, and wait-for-
done. Notably, run-on-core does not specify a particular core, leav-
ing it to the firmware to schedule.

We designed the system assuming that multiple userspace pro-
cesses would be needed to reach peak utilization at the VCU level
since we use a process-per-transcode model and the VCU is fast
enough to handle multiple simultaneous streams. The firmware
schedules work from queues in a round-robin way for fairness
(ensuring forward progress) and to maximize utilization. Software
describes the work as a data dependency graph which allows op-
erations to start and end out-of-order while respecting dependen-
cies between them. Typically, each userspace process controls one

firmware queue with multiple threads multiplexed onto it. One
thread enqueues commands to decode video in response to the
need for new frames, while another enqueues commands to scale
or encode video as frames become available. The loose coupling
allows userspace software to adjust the flow of frames through
codecs, efficiently expressing 2-pass encodes (low-latency, lagged,
or offline) and changing codec modes (scaling, temporal filtering,
H.264, VP9) without requiring other system changes.

It is substantially easier to iterate on userspace software in data
centers than on any lower level software (firmware, kernel) because
low level software updates require disruptions such as machine
reboots and therefore take longer to roll out globally. Userspace
VCU programming was vital for rapid iteration on the rate control
algorithms after initial deployment (results in Section 4.3).

3.3.3 Co-Design for Work Scheduling & Resiliency: To realize the
maximum per-VCU and data center-wide VCU utilization, we
moved our video processing scheduler from a uniform CPU cost
model (fixed CPU-seconds/seconds per graph step) to an online
multi-dimensional bin-packing scheduler [19]. This ensures that no
single VCU becomes completely saturated and no video transcoding
task (a step in the dependency graph) becomes resource starved.
Each cluster has multiple logical "pools" of computing defined by
use case (upload, live) and priority (critical, normal, batch) that
trade-off resources based on each pool’s demand. Each pool has
its own scheduler and multiple workers of different types (e.g.
transcoding, thumbnail extraction, generating search signals, fin-
gerprinting, notifications, etc), some with exclusive access to a
VCU and some doing regular CPU based processing.

Each type of worker defines its own set of named scalar resource
dimensions and a capacity for each. For example, resources for the
VCU workers include fractional decode and encode cores, DRAM
bytes, and fractional host CPU. We also use synthetic resources to
provide an additional level of control (for example, to limit the
amount of software decode to indirectly save PCI Express band-
width which is otherwise hard to attribute to a specific process).
CPU processing workers use the same scheduler but most retain the
prior one-dimensional "single slot per graph step" model with the
configured worker size (RAM, CPU) and per step average resource
usage determining the number of available slots per worker.

The worker type also defines a mapping from a step request
(which includes input video dimensions, input format, output for-
mats, encoding parameters) to the amount and type of resource re-
quired. The VCU estimations were initially based on measurements
of representative workloads in an unconstrained environment and
then tuned using production observations. This per-worker type
mapping admits different resource costs for dynamic tuning and
future VCU and CPU changes. As an example, for the VCU, this
mapping enabled opportunistically boosting encoder utilization to dy-
namically leverage the host CPU for decoding (based on a synthetic
resource dimension discussed earlier) when hardware decoding be-
came a resource bottleneck. (Additional agility results are discussed
in Section 4.3.)

The scheduler is horizontally scaled due to the large number
of workers and the need for low latency. It maintains a sharded,
in-memory availability cache of all workers and their current re-
source capacity across all dimensions, distributing the work and
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periodically receiving updates from the workers about their avail-
able resources. Work is distributed using a load-maximizing greedy
scheduling algorithm across all resources. This causes workers to
become idle when pool-level usage drops, at which point they may
be stopped and reallocated to other pools in the cluster, maximizing
cluster-wide VCU utilization. Another part of the scheduler sizes
the workers based on workload mix demand.

In the event of an error, the work is rescheduled on another
VCU or with software transcoding, leveraging the existing video
processing framework retry mechanism.

...

Service Request 
Queue

Worker Picker Availability Cache

Worker 0
Available: {D 0; E 7,000...}

Worker 1
Available: {D 1,000; E 7,000...}

Worker N
Available: {D 3,000; E 10,000...}

Request
Need: {D 500; E 3,750...}

Figure 6: Video processing work scheduler

Figure 6 illustrates our design with VCU workers showing just
the decoder (D) and encoder (E) core dimensions. To avoid fractions,
the core dimensions use millicores so each VCU has 3,000 millide-
code cores and 10,000 milliencode cores available. In the example,
the Request requires 500 millidecode cores and 3,750 milliencode
cores. The worker picker sees in its availability cache that Worker 0
has insufficient decode resources and thus will schedule the Request
on Worker 1 (first fit by worker number). Worker N is fully idle and
thus is a candidate for being stopped to free up resources.

3.4 High-Level Synthesis for Agility
The state-of-the-art hardware design flow adopted in the VCU
development is a combination of Mentor Graphics’ Catapult [52]
tool and an in-house integration tool called Taffel that creates the
C++ and Verilog fabric for composing individual HLS leaf blocks.

We implemented the encoder core design using a C++ based HLS
design flow for faster development and design iteration and to avoid
maintaining a separate architectural simulation model [56]. C++
development enabled the use of LLVM’s AddressSanitizer [50] and
MemorySanitizer [54] to discover hardware issues (out-of-bounds
access, use-of-uninitialized-data, etc.) that would have been in-
feasible to find with conventional RTL simulation or emulation
environments due to the size and duration of the tests. These issues
mapped directly back to architectural errors that could be easily
fixed and verified, typically in under a day.

During pre-silicon verification, our video processing system ran
full quality regressions using HLS C++ simulations across our orig-
inal, internal-only, large user-generated content corpus in around
1 week. Initial results showed severe quality problems; after tuning
and improving the software (e.g., rate control) and re-evaluating,
the quality of the hardware was sufficient to tape-out the VCU.
This design methodology allowed for the first silicon tape out to be
immediately usable for transcoding at scale. In addition, our design
flow had several other significant benefits, discussed below.
High Productivity and CodeMaintainability:With HLS, there
was 5-10x less code to write, review, and maintain compared to a

traditional Verilog approach. We could implement more encoder
features with the available time and engineering resources.

Massively Accelerated Verification: Relying on standard soft-
ware development tool flows, the C++ design exploited cloud com-
pute for embarrassingly parallel verification. As a result, testing
throughput was multiplied by 7-8 orders of magnitude over RTL
simulation. HLS exposed over 99% of the functional bugs during
C++ testing, before ever running full VCU RTL simulation.

Focusing Engineering Effort on High-Value Problems: Cycle-
by-cycle data path control logic was designed by the HLS compiler,
and we spent more time on algorithm and (macro)architecture
design. We skipped the strenuous verification of the microarchitec-
ture since the HLS flow does not suffer the human errors that ail
traditional Verilog designs.

Design Space Exploration: Due to the significant microarchi-
tectural design and verification effort with Verilog, there is often
only time to evaluate one RTL design, limiting the architecture
design. With our flow, we were able try numerous architectures
and algorithms to find optimal quality-silicon area trade-offs for
the numerous design choices in many encoding problems (motion
estimation, block partitioning, and rate-distortion optimization).
This led to significant gains in encoder compression efficiency while
allowing us to stay within the area budget.

Late Feature Flexibility: We were able to make architectural ad-
justments late in the project to support late feature requests and
address challenges exposed in the place and route stage of the phys-
ical design. For subsequent chip designs, our design flow will make
migration to new silicon process nodes and clock frequency targets
effortless.

While manual RTL may have saved some VCU silicon, the afore-
mentioned benefits overwhelmingly tip the scales and we believe
HLS was the right choice for this design (given the somewhat
relaxed power and die-area constraints for data center ASICs). Fur-
thermore, in cases where a legacy Verilog reference design was
available, the HLS implementations reached silicon area parity.

3.5 Discussion
As can be seen from the prior discussions, the distinct require-
ments of cloud video workloads (diversity, throughput, quality) and
warehouse-scale environments (efficiency, reliability, agility, scale)
combined with new degrees of freedom (relaxed power/area con-
straints, multi-ASIC solutions, and hardware-software co-design)
lead to distinct design innovations and engineering optimizations,
both at the overall holistic system level and for individual compo-
nents. Below, we summarize how our resulting warehouse-scale
video acceleration system design is fundamentally different from
consumer-centric designs in significant ways.

From a data center perspective, our VCU ASIC implements a
more sophisticated encoder pipeline with more area-intensive opti-
mizations (like temporal filtering and an aggressive memory sys-
tem) and embraces density across multiple encoder and decoder
cores. But at the same time, some aspects are simplified. Only the
most compute-intensive aspects of the algorithm are ossified in
hardware, with software fall-back (on general-purpose CPUs) for
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infrequently-used or dynamically-changing computations. Simi-
larly, resiliency mechanisms are simpler at the ASIC level (e.g.,
SRAM error detection in the encoder cores), relying instead on high
levels of redundancy and software failure management. In addi-
tion, the VCU supports stateless operation and user-space firmware
control, to provide fungibility and programmability with minimal
disruption to traditional data center deployments. This can be lever-
aged at higher levels of the system for interoperable scheduling and
continuous tuning. We also use high-level synthesis to design our
ASICs for more sophisticated verification and design exploration,
as well as late-feature flexibility.

We assemble multiple VCUASICs in bigger systems and optimize
the provisioning and system balance across computing, memory,
and networking to match the diversity and fast-changing require-
ments of data center workloads. At the same time, with hardware-
software co-design, we provide fungible units of work at the ASIC-
level and manage these as cluster-level logical pools for novel work
shapes and continuously evolving applications. Our design supports
computationally-intensive multiple-output transcoding (MOT) jobs
and our scheduler features rich abstractions and a new bin-packing
algorithm to improve utilization.

4 DEPLOYMENT AT SCALE
Below, we evaluate our design. Section 4.1 quantifies the perfor-
mance and quality improvement of our system on the public vbench
benchmark, followed by fleetwide results on production workloads
in Section 4.2. Sections 4.3 and 4.4 evaluate our co-design approach
in post-deployment tuning and inmanaging failures, and Section 4.5
concludes with a discussion of new workloads and application ca-
pabilities enabled by hardware acceleration.

4.1 Benchmarking Performance & Quality
Experimental Setup: We study accelerator performance and effi-
ciency using vbench [39]. This public benchmark suite consists of
a set of 15 representative videos grouped across a 3-dimensional
space defined by resolution, frame rate, and entropy. We load the
systems under test with parallel ffmpeg [14] transcoding workloads
processing vbench videos and we measure throughput in pixels
encoded per second (Mpix/s), which allows comparison across a
mix of resolutions7.

In comparing to alternative approaches, we faced a few key
challenges. Notably, our accelerator’s target perceptual quality and
bitrate trade-offs differed from the off-the-shelf accelerators avail-
able during the VCU’s development. So, it was important to go
beyond pure throughput comparisons to include quality for an
accurate comparison.

We studied two baselines: a dual-socket server with Intel Skylake
x86 CPUs and 384 GiB of DRAM, and a system with 4 Nvidia T4
GPUs with the dual-socket server as the host. We compare these
to our production acceleration system with 10 cards (20xVCU) but
also present data for an accelerator system with 4 cards given
the 4-card GPU baseline. In the GPU and accelerator systems, all
video transcoding is offloaded to the accelerators, and the host is
only running the ffmpeg wrapper, rate control and the respective

7Megapixels per second – Mpix/s – is computed by multiplying the throughput in
frames per second by the width and height, in pixels, of the encode output(s).

device drivers. Inherent in any comparison like this are differences
in technology nodes and potential disadvantages to off-the-shelf
designs from not having access to the software for co-design, etc.
But, we nonetheless present comparisons with other accelerators to
quantify the efficiency of the accelerator relative to state-of-the-art
alternatives in that time frame.

Table 1: Offline two-pass single output (SOT) throughput in
VCU vs. CPU and GPU systems

System Throughput [Mpix/s] Perf/TCO8

H.264 VP9 H.264 VP9
Skylake 714 154 1.0x 1.0x

4xNvidia T4 2, 484 — 1.5x —
8xVCU 5, 973 6, 122 4.4x 20.8x
20xVCU 14, 932 15, 306 7.0x 33.3x

Encoding Throughput: Table 1 shows throughput and perf/TCO
(performance per total cost of ownership) for the four systems and
is normalized to the perf/TCO of the CPU system. The performance
is shown for offline two-pass SOT encoding for H.264 and VP9.
For H.264, the GPU has 3.5x higher throughput, and the 8xVCU
and 20xVCU provide 8.4x and 20.9x more throughput, respectively.
For VP9, the 20xVCU system has 99.4x the throughput of the CPU
baseline. The two orders of magnitude increase in performance
clearly demonstrates the benefits of our VCU system.

In fact, our production workload is largely MOT, which was
not supported on our GPU baseline. Prior to VCU, the production
workload used multiple SOTs instead of running MOT on CPU
given the high latency. MOT throughput is 1.2-1.3x higher than
SOT (976 Mpix/s on H.264 and 927 Mpix/s on VP9), stemming from
the single decode that is reused to produce all the output resolutions.

Given that the accelerators themselves are a non-trivial addi-
tional cost to the baseline, we use perf/TCO as onemetric to compare
the systems. We compute perf/TCO by dividing the achieved per-
formance by the total cost of ownership (TCO)9 which is the capital
expense plus 3 years of operational expenses, primarily power. For
H.264 encoding, the perf/TCO improvement of the VCU system
over the baseline is 4.4x with 4 cards, and 7.0x in the denser produc-
tion system. By comparison, the GPU option is a 1.5x improvement
over the baseline. The cost of the GPU is driven by many features
that are not used by video encoding, but at the time of development,
it was the best available off-the-shelf option for offloading video
encoding. For VP9 encoding, VCU improves perf/TCO over the
baseline by 20.8-33.3x depending on the card density. VP9 is more
computationally expensive than H.264, as can be seen in the raw
throughput measurements on the baseline Skylake system, making
an accelerator an even more attractive option for that format.

In a perf/watt comparison of the systems, the VCU system
achieves 6.7x better perf/watt than the CPU baseline10 for single
output H.264, and 68.9x higher perf/watt on multi-output VP9.
Encoding Quality: Using the vbench microbenchmark, we com-
pare the encoding quality of the VCU (both H.264 and VP9) versus
8Perf/TCO is relative to the Skylake baseline with both sockets used.
9We are unable to discuss our detailed TCOmethodology due to confidentiality reasons.
At a high-level, our approach parallels TCO models discussed in prior work [4].
10We use only active power for the CPU system, subtracting idle. We did not collect
active power for the GPU, hence we do not report those comparisons.
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Figure 7: Rate-distortion (RD) curves comparing VCU encodings of the vbench video suite, to software libx264 and libvpx11.

software encoding using libx264 and libvpx. Figure 7 shows the
operational rate-distortion (RD) curves [44, p. 26–28] for each vbench
video, with peak signal-to-noise ratio (PSNR) representing distor-
tion on the vertical axis, bitrate (bits per second of video stream)
on the horizontal axis. Each line is a video in the vbench suite, with
points on the curves formed by encoding each video at a different
target bitrate. RD curves are effective visualizations of the nature
of lossy video encoding; encoders may represent a video using
more or fewer bits to achieve higher or lower perceptual quality,
as measured by PSNR in this case. The improvement of VP9 over
H.264 is visible in Figure 7 (higher is better), where the RD curves
in the bottom graphs have shifted to the left, i.e. the VP9 encoder
uses fewer bits while maintaining comparable visual quality. The
RD curves also show the high variance in encoding quality across
videos. The topmost curves, e.g. presentation and desktop, have
content that is easy to encode, i.e. high PSNR values at very low
bitrates. VP9 encodings of these videos have lower PSNR values, yet
this is intentional as there is minimal improvement in subjective
visual quality with PSNR values above 45 dB [9]. In contrast, the
bottom most curves, e.g. holi, are videos with a lot of motion, and
they are harder to encode. For the same bitrate, the VP9 encodings
of holi have higher PSNR than H.264.

We compare the encoding quality of VCU using BD-rate for each
video relative to the software baseline, and average across the suite.
BD-rate represents the average bitrate savings for the same quality
(PSNR in this case) [5]. Comparing VCU-VP9 and Software-H.264
illustrates the advantages of hardware acceleration. VCU leverages
the improved coding efficiency of VP9 relative to H.264 to achieve

11The PSNR Ceiling at 45 dB depicts the limit for visually perceptible quality improve-
ments [9].

30% BD-rate improvement relative to libx264. The high compute
cost of VP9 makes it computationally infeasible at scale in software.
VCU H.264 encodings are on average 11.5% higher BD-rate than
libx264, and VCU VP9 is 18% greater BD-rate than libvpx. This is
expected as the pipelined architecture cannot easily support all the
same tools as CPU, such as Trellis quantization [49]. Section 4.3
will show how hardware bitrate has improved steadily over time
via rate control tuning, such that both H.264 encoders are currently
comparable.

4.2 Production Results
We next present data from fleetwide deployment and tuning, serv-
ing real production upload workloads (discussed in Section 2). Com-
pared to the small ffmpeg benchmarks in vbench, we now measure
the production transcoding service throughput, which also includes
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Figure 8: Throughput per VCUmeasured for real production
video transcoding workloads
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Figure 9: Post-launch accelerator workload scaling.

moving video onto and off the host and a different mix of resolutions
and workloads.

Figure 8 shows throughput per VCU measured in Mpix/sec for
video upload workloads from production. The top, blue line is the
main MOT worker job, and we observe about 400 Mpix/sec (the
difference vs. vbench MOT throughput is due to I/O and workload
mix). The bottom, red line is our single output transcoder and has a
lower throughput of around 250 Mpix/sec because the worker must
also produce inefficient low-resolution outputs for high-resolution
inputs.

Performance measurements from production jobs are consistent
with the trends observed with vbench: doing MOT instead of SOT
is a big win. The lack of variability in the MOT line also illustrates
that we are able to utilize the cores close to maximum capacity.
Software encoding is no longer in production to present a concur-
rent fleetwide comparison, but the relative throughput of software
versus hardware encoding is similar to vbench data.

4.3 Benefits of Co-Design in Deployment
Like any other hardware project, the initial measured through-
put of hardware differs from predicted pre-silicon prototyping or
simulation/emulation, offering substantial room for improvement
post-launch. Our co-design across hardware and software created
multiple opportunities for tuning. Figure 10 shows the improvement
in coding efficiency on VCU for H.264 and VP9 as the percent dif-
ference in bitrate relative to software (i.e., libx264 and libvpx) from
the time the accelerators were deployed. Encoder rate control runs
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Figure 10: Hardware bitrate improvement over time relative
to Software (data points weighted by per-format egress)

exclusively on the host and has improved over time, eventually sur-
passing software bitrates at iso-quality, including competing with
improvements in software encoding. Improved group-of-pictures
structure selection, better use of hardware statistics, introduction of
additional reference frames, and importing rate control ideas from
the equivalent software encoders were all valuable post-deployment
optimizations. In many cases automated tuning tools were applied
with success.

Figures 9a and 9b show the growth in total throughput per job
with chunked output and live transcoding. As real workloads were
deployed, various performance bottlenecks in the software stack
were discovered and fixed. Continuous profiling tools at all levels
of the stack (userspace, host kernel, firmware) substantially con-
tributed to this progress. For example, measurements of loaded
machines showed ~40 Gbps of average inter-socket bandwidth
indicating NUMA bottlenecks, and a post-launch rollout of NUMA-
aware scheduling for the accelerator jobs showed performance
gains of 16-25%.

One additional benefit of the hardware-software co-design is
that the scheduler can make trade-offs to reduce resource stranding.
For example, Figure 9c shows how some hardware decode is shifted
back to VCU host CPU to reduce encoding core stranding. We
enabled this optimization after month 6 (on the horizontal axis), at
which point one can see the average decoder utilization drop from
approximately 98% to 91% (on the vertical axis).

4.4 Failure Management
Reliability is a first class concern [4] in the full hardware life cycle
(delivery, burn-in, fault detection, repair, update, decommission).
In this section, we discuss how our hardware-software co-design
decisions from Section 3 helped address failure management.

Failure Monitoring and Workflow: As noted above, the VCUs
are deployed in a dense configuration: 20 VCUs per host with many
hosts per rack. In our warehouse environment, the rack is the unit
of deployment, while the unit of repair is individual components:
PCI Express cards, chassis, cables, power supplies, fans, CPUs, etc.
Consequently, an individual host has dozens of discrete compo-
nents that may need repair, and it is responsible for collecting fault
management information from the components. The VCU firmware
provides telemetry from the cards reporting various health and fault
metrics (temperature, resets, ECC errors, etc). When a sufficient

610



ASPLOS ’21, April 19–23, 2021, Virtual, USA Parthasarathy Ranganathan, et al.

number of faults have accumulated, a host will be marked as unus-
able and queued for repairs. To protect against faulty repair signals
causing large scale capacity loss, the number of systems allowed in
repair states is capped. Therefore the warehouse scheduler needs
to tolerate a modest number of faulty systems in production while
human technicians repair those that have been removed.

VCU Failures: It is not cost effective to send a system to repair
when a small fraction of the VCUs have failed. Accordingly, the fail-
ure management system has the capability to disable an individual
VCU so that the majority of the system can remain available, and
the load balancing software adapts to this degradation. Given the
number of encoder cores on the VCU, it would also be possible to
disable individual cores, but many failure modes affect the whole
VCU (e.g., DRAM errors). Managing VCUs with variable through-
put due to failed cores adds to system complexity, so we chose to
treat an entire VCU as the lowest level of fault management, with
our board providing independent power rails for each VCU. The
correlation between card swaps and VCU failures confirms that
VCU failures are largely independent.

Memory/Host Failures: Given the large amount of DRAM and
embedded SRAM in the transcoding system, memory corruption
errors are a significant source of concern. To detect manufacturing
escapes, DRAM test patterns are written and evaluated during
burnin. While the DRAM has SECDED ECC, many of the embedded
SRAMs only have double-error-detect, as the latency impact of error
correction was unacceptable but the reliability impact was tolerable.
In production, high levels of correctable or uncorrectable faults will
result in disabling the VCU and will eventually trigger a repair
flow (including using MABIST [3]). Failures in the host, expansion
chassis, or associated cables result in the full host being disabled.

Avoiding “Black-Holing”: At the system level, a failed transcod-
ing operation on a given VCU will be retried at higher layers of soft-
ware and typically assigned to a different VCU or software worker.
However, a failing but not yet disabled VCU is often ‘fast’ relative
to a working one and can naturally result in “black-holing” [35],
where a disproportionate amount of traffic is sent to these bad sys-
tems. After encountering this issue in practice, we implemented
the following mitigation: a transcoding worker, upon encountering
a hardware failure, immediately aborts all work on the VCU, which
is retried at the cluster level. A new worker, when first assigned
to a VCU, does a functional reset and runs a set of short ‘golden’
transcoding tasks across every VCU core to detect persistent faults
(relying on the core’s deterministic behavior). If one is found, the
worker refuses to start, preventing the bad VCU from being used
until the fault management software disables the VCU or host.

Reducing “Blast Radius”:As discussed earlier, videos are sharded
into short chunks and are typically processed in parallel across hun-
dreds of VCUs, so a single failing VCU can corrupt many videos.
Video playback systems are generally tolerant of corruption, as
broadcast media is susceptible to both erasure and corruption dur-
ing transmission [29]. We still prefer to reduce this issue, so our
system includes high-level integrity checks (i.e., video length must
match the input) that detect and prevent most corruption. Addi-
tionally our software records the VCUs on which each chunk is
processed for fault correlation. Nonetheless, the system will have

bad video chunks escape, which is also seen with CPU based encod-
ing. A future enhancement would be to use consistent hashing [32]
to reduce the number of VCUs on which a given video is processed.

4.5 New Capabilities Enabled by Acceleration
Successful accelerators are not just about cost reductions but funda-
mentally enable new capabilities that were not previously possible.
This section highlights two examples that were enabled by our VCU
systems that were infeasible at scale (too expensive or too complex)
with our legacy software infrastructure.

Enabling Otherwise-Infeasible VP9 Compression: As noted
earlier, VP9 software encoding is typically 6-8x slower and more
expensive than H.264 – a 150 frame 2160p chunk (5 seconds at
30 FPS) encoded on multiple CPU cores often takes 15 wall time
minutes and over a CPU-hour. Consequently, even with chunk-
level parallelism, it was infeasible from both a cost and latency
perspective to produce VP9 at the time of video upload. Hence,
in the non-accelerated scenario, VP9 would only be produced for
the most popular videos using low-cost batch CPU after upload.
Additionally, to reduce the effect of batch preemption, each resolu-
tion was produced by SOT, increasing the amount of CPU spent on
re-decoding. With VCUs, we could instead shift to producing both
VP9 and H.264 at upload time and leverage efficient MOT encoding.

Enabling New Use-Cases: In internet broadcasting scenarios,
camera-to-eyeball delays of under 30 seconds are desirable. Our
software-based encoding pipeline could produce VP9 for live
streams only by encoding many short (2-second) chunks in parallel,
trading end-to-end latency for throughput. As a concrete example,
a 2-second 1080p chunk could be encoded in 10 seconds, the encod-
ing system would transcode 5-6 chunks concurrently to achieve the
needed throughput of a 1 video-sec/second. In practice, additional
buffering was needed due to high variance in software encoding
throughput. This necessarily limited the resolution, quality, and
affordability of VP9; today, a single VCU can handle this MOT in
real time. The consistency of the hardware transcode speed enabled
an affordable 5-sec end-to-end latency stream in both H.264 and
VP9. An additional new use case was Stadia, Google’s cloud gaming
service, which requires extremely low encoding latency at high
resolution, high framerates, and excellent visual fidelity. By using
the low-latency two-pass VCU based VP9 encoding, Stadia can
achieve these goals and deliver 4K 60 FPS game play on connections
of 35 Mbps.

5 RELATEDWORK
There is a large body of work on hardware blocks for encod-
ing/decoding (e.g., [2, 43, 60]). None of these studies discuss the
block’s integration into data center environments. Commercially,
Ambarella [1] provides H.264 encoding (but not VP9) and Samsung
Exynos [47] has support for H.264 and VP9 (but optimized for real-
time transcoding, not high-quality offline two-pass). Mobile phones
include encoders that are much smaller and more power-efficient,
but with more relaxed quality and bitrate requirements. Our work,
in addition to designing our own hardware block targeting our
workload’s stringent quality requirements, also takes a systems
approach to designing and deploying them for the data center.

611



Warehouse-Scale Video Acceleration: Co-design and Deployment in the Wild ASPLOS ’21, April 19–23, 2021, Virtual, USA

Some GPUs include support for video transcoding (e.g., one to
three H.264 or H.265 encoding cores and some VP9 decoding cores),
but, again, these are designed primarily for consumer applications
and do not meet the quality requirements of video sharing work-
loads. Commodity GPU encoders provide performance and power
improvements over a CPU, but the quality is only comparable to
libx264 superfast up to medium settings, and notably not compa-
rable to the high quality preset [36, 62]. Additionally, the small
number of encoder cores per GPU require a very large number of
host systems and cards to handle the necessary throughput posing
both power and density challenges.

More broadly, there has been a large body of work on machine
learning accelerators (e.g., [8, 18, 30, 38, 64]) including some that
have discussed co-design across hardware and software (e.g., [23]).
Similarly, there have been other studies that have examined system
balance issues for warehouse-scale general-purpose workloads. The
ASIC clouds paper [40] discusses assembling accelerator ASICs in
large warehouse-scale environments including a simple case-study
of a simple H.265 video encoder. However, their study focuses on
TCO trade-offs (e.g., “two-for-two rule on ASIC NREs vs non-ASIC
TCO). Accelerometer is an analytical model to evaluate accelera-
tion opportunities in operations that are common to cloud work-
loads [53]. In contrast to these studies, this paper is the first work
on broadcast-quality video acceleration at scale in large warehouse-
scale environments, focusing at depth on the design trade-offs for
commercial production workloads serving hundreds of hours of
uploads per minute, as well as discussing co-design trade-offs with
a production video processing software stack and deployment at
scale.

Prior work for data center resource management has largely
focused on the heterogeneity of the workload [13], and on the vari-
ability of performance due to interference for applications running
on multicore processors [51, 58]. Scheduling for heterogeneity due
to generations of servers in a data center has not covered the ex-
treme case of accelerators [41, 46]. To the best of our knowledge,
our work is the first to present data center accelerator resource
management via multi-dimensional bin-packing, an approach that
provides high availability, utilization, and scalability.

6 CONCLUSION
Video processing is an important and fast-growing foundational
workload in warehouse-scale data centers and clouds. The expo-
nential growth in video transcoding and storage, combined with
slowing technology scaling, provide challenges around sustaining
existing growth and managing costs along with opportunities to
unlock new capabilities, through hardware acceleration. Video ac-
celeration on the server side, at warehouse-scale, brings significant
challenges around dealing with the workload complexity (transcod-
ing algorithm trade-offs, quality/throughput requirements) and
data-center-scale (co-design with distributed processing at scale
and with high churn). In this paper, we address these challenges,
presenting (to the best of our knowledge) the first work to dis-
cuss the design and deployment of video transcoding at scale in a
large production fleet supporting multiple video-centric workloads
(video sharing, photos/video archival, live streaming, cloud gaming)
with stringent quality, throughput, latency, and cost requirements.

We present the design of our system, including a new hardware
accelerator building block – the video coding unit (VCU) – and a
system architecture that balances individual codec hardware blocks
in VCUs, VCUs in boards and systems, all the way to individual
systems in clusters and geographically-distributed data centers.
We highlight how our co-design across hardware and software (at
all levels from the firmware to the distributed data center sched-
uler) allow for improved efficiency, but, more importantly, improve
fungibility and iterative design. We present results using public
benchmarks and from our at-scale deployment. Our accelerator
system has an order-of-magnitude performance-per-cost improve-
ment over our prior baseline system (20x-33x) while meeting strict
quality requirements, and our careful hardware-software co-design
allows for real-world failure management and dynamic tuning. Our
accelerator also enabled new capabilities and workloads (savings on
network bandwidth and storage, live/video-on-demand workloads,
cloud gaming, etc).

We believe we have only touched the tip of the iceberg on video
acceleration. There are several system design trade-offs and oppor-
tunities that merit increased analysis (e.g., host computing design,
accelerator disaggregation and sharing, new specifications like AV1,
compiler-assisted software sanitizers applied to HLS C-simulation,
etc). Similarly, rich opportunities for future innovation lie in combin-
ing transcoding with other machine-learning on video (for example,
to automatically generate captions or enable video search) or, more
broadly, offloading additional video processing currently applied
between decoding and encoding.
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A SYSTEM BALANCE DETAILS
Here we present additional details on system balance that were
summarized in Section 3.3.1. There is no global cluster-level per-
formance target as each region has unique characteristics. The
ideal state is based on equalizing the throughput of all clusters in
a region to minimize the cost of regional redundancy while meet-
ing demand. The lower performance bound is set by the ability to
amortize the overheads that don’t scale linearly with the amount
of video transcoding, which includes non-transcoding resources
and additional VCU racks needed for availability. Real-world con-
straints preclude the ideal state over extended periods of time, but
these cluster-level considerations impact the target throughput of
an accelerator host machine.

VCU host machines are not shared with other jobs, thus insulat-
ing workers from “noisy-neighbor” performance and availability
concerns. We minimize the “data center tax” [31] by putting as
many accelerators into a host as its CPU, DRAM, and network will
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Figure 11: System balance considerations: speed & feeds

support. Combined with the throughput and cost optimized VCU
design, this delivers a perf/TCO optimized accelerator system.

A.1 System-Level Design Target
To minimize development cost and risk, we reused existing com-
ponents when possible. The goal was to maximize transcodes per
system and minimize cost per transcode, even if certain extreme
usage scenarios might incur stranding. For example, a system de-
signed to exclusively handle 720p videos might become overloaded
if it were mostly processing 144p videos (25x fewer pixels). We ad-
dress these situations using the data center optimization co-design
discussed in Section 3.3.2.

The host-level system constraints are shown in Figure 11. First,
there is the 100 Gbps Ethernet interface that connects the host to the
data center network and through which all control and video data
will pass. The hosts (dual-socket Intel Skylakes) have ~100 usable
logical cores, ~1600 Gbps of host DRAM bandwidth, and support
up to four PCI Express expansion chassis [66] each attached with
a ~100 Gbps PCI Express Gen3x16 connection. Each chassis can
be configured to host between 200 and 500 Gbps of accelerator
hardware. In aggregate, a system can host accelerator attachment
ratios between 400 to 2000 Gbps.

A.2 Bandwidth as Transcoding Throughput
Our initial analysis of throughput suggested that the 100 Gbps net-
work interface would be the primary constraint on the accelerator
system’s transcoding throughput. Theworst-case output bandwidth
is set by the low-latency, single-pass encoder core throughput scaled
by the number of cores per host, which corresponds to a fully SOT
workload (decoding is ignored).

YouTube recommends a range of upload bitrates [20], from
1 Mbps for a 360p, 30 FPS video to 68 Mbps for a 2160p, 60 FPS
video, with an average of 6.1 pixels-per-bit. This gives a network
interface transcoding limit of ~600 Gpixel/s per system. Allowing
for double the “ideal” upload bitrates and up to 50% overheads for
RPC overheads and unrelated traffic reduces this to ~153 Gpixel/s
for each accelerator host, but enables tolerance of 2:1 or even 4:1
rack-level over-subscription to help reduce per-host costs based on
typical bandwidth usage. The PCI Express non-video data related
to operating the VCUs is <4 kiB per frame (each direction), which
gives ~0.6 Gbps for 2160p and ~22 Gbps for entirely 360p video
for the 153 Gpixel/s throughput, easily met by even the densest
host attachment option. The encoder throughput from Section 3.3.1,
equivalent to ~0.5 Gpixel/s, gives a ceiling of 30 VCUs per host for
real-time or 150 VCUs for offline two-pass.

Table 2: Host resources scaled for 153 Gpixel/s throughput
Use Logical Cores DRAM Bandwidth

Transcoding overheads 42 214 Gbps
Network & RPC12 13 300 Gbps

Total 55 712 Gbps

A.3 Host CPU Usage and Memory Bandwidth
In the fully-accelerated transcoding use case, the host CPU cores
are handling networking, launching new transcoding processes,
muxing and demuxing the video streams, transcoding audio, and
operating the accelerators. Individual transcoding processes re-
quire only a couple of MiB of system memory, as VCU DRAM holds
the uncompressed video frames. Measurements for the CPU, host
DRAM bandwidth, and transcoding throughput were made on ex-
isting systems (GPUs, no-op transcoding, etc.). Table 2 shows the
values scaled to the above network limit, which are about half of
what the target host system provides.

A.4 VCU DRAM Capacity
The primary use of DRAM during transcoding is to hold uncom-
pressed and reference frames for both decoding and encoding.
The encoder core’s reference compression significantly reduces
the DRAM bandwidth but slightly increases (+~5%) the DRAM foot-
print. The maximum expected 2160p resolution in VP9 with 10-bit
color depth gives ~140 MiB for reference frames (8 plus 1 output).

As mentioned in Section 2.1, a key use-case is handling aMOT on
a single VCU. The decode and encode footprint for MOT comes to
~420 MiB. Keeping up to 15 frames for lagged and offline two-pass
encoding modes requires ~180-220 MiB. Padding requirements and
ephemeral buffers brings the expected largest, 2160p total footprint
to roughly 700 MiB per MOT and 500 MiB per SOT.

Scaling this to the network throughput limit gives a worst-case
VCU DRAM requirement for low-latency SOT of 150 GiB (less than
the 240 GiB of 30 VCUs) and 750 GiB for offline two-pass (less than
the 1200 GiB of 150 VCUs), which supports using 8 GiB of DRAM
per VCU since 4 GiB would be insufficient. The efficiency of MOT
reduces these numbers by ~25% due to the reuse of decoded frames
across outputs.

A.5 Aggregate System Limit
These values led us to maximize the number of VCU per expansion
chassis, but concerns on the size of the failure domain and avail-
ability led us to limit each system to only two expansion chassis.
Optimizing the cores per VCU led us to put two VCUs per PCI Ex-
press Gen3x16, giving 20 VCUs per host system. These conservative
choices, specifically made to optimize time-to-market velocity, are
well under the limits discussed above for the network, PCI Express,
and host system levels. This headroom made it easier to maximize
accelerator utilization, but it also left the door open to changing
the system configuration after gaining production experience.

1225 Gbps sustainedwith bursts to 100 Gbps; needing a conservative six DRAMaccesses
per network byte.
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