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Google’s WAN connects different regions through high-capacity links
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Google’s WAN connects different regions through high-capacity links
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What about bottlenecks shared
between WAN and datacenter traffic?
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WAN demand significantly impacts the
latency and drop rate of datacenter traffic



WAN traffic reaction iIs too slow
to handle the fast dynamics of
datacenter traffic
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Impact of WAN on Datacenter

WAN RTT is
10 milliseconds Datacenter RTT is
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WAN will take a thousand datacenter RTTs to detect the
problem, leaving datacenter to solely react to congestion
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Impact of Datacenter on WAN

* Buffer sizing for WAN flows is proportional to BDP
WAN BDP is

 Short buffers can be problematic O(megabytes) per flow

* Better algorithms have smaller buffer requirements

. Assuming available bandwidth is stable ~~ BPR or DCTCP

WAN traffic suffers from excessive loss due to lack of
buffering and rapid changes in available bandwidth
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Summary of Findings

« WAN RTT is too large compared to
datacenter dynamics

e Datacenter throughput suffers as it solely reacts
tO COngeSthn Datacenter Bytes WAN Bytes Queue Size

in Flight at Bottleneck

 WAN creates long queues due to rapid changes
In available bandwidth

 No buffer space in datacenter
switches to absorb WAN bursts

 WAN traffic suffers due to excessive drops
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How should we handle bottlenecks shared
between WAN and datacenter traffic?

How should we handle the rest of the
bottlenecks?




Main Idea \/
Reduce WAN feedback delay
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e Connection termination at the border of the
datacenter

 Requires middleboxes that handles the state of all WAN
traffic entering and exiting datacenter

* Direct signal from the bottleneck

* Requires switches that support direct congestion
feedback
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What about bottlenecks that
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Near-Source Control Loop

* Switches generates direct congestion
notification message

* Message indicates the problematic
flow and the extent of the congestion

e Sender modulates transmission rate
based on congestion level
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Challenges

 How to implement the direct signal in switches?

 How should the two control loops interact?
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Quantized Congestion Notification (QCN)

 An IEEE standardized L2 congestion control algorithm
(IEEE Std 802.1Qau-2010)

* QOCN relies on explicit control messages from the point of
congestion sent to traffic sources indicating congestion
severity
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Quantized Congestion Notification (QCN)

 An IEEE standardized L2 congestion control algorithm
(IEEE Std 802.1Qau-2010)

* QOCN relies on explicit control messages from the point of
congestion sent to traffic sources indicating congestion

severity

Message

-
-
QCN :
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QCN from L2 to L4

 QCN messages are L2 messages that rely on L2 routing

QCN messages are routed in L3-routed an data center network
by enabling “L2 Learning” feature available in modern switches

 QCN control logic relies on accurate timers and
counters implemented Iin hardware

A QCN-based congestion control logic is implemented in
a software NIC or in the hypervisor

33



Evaluation




Evaluation Setup

Annulus Is evaluated on three racks:

Two racks in the same LAN and one connected to WAN
them through WAN

WAN latency is 8ms and LAN latency is tens of
microseconds

Synthetic load is generated using an RPC load
generator with cross-rack all to all communication

Datacenter to WAN traffic ratio is 5:1

DCTCP and BBR are used for end-to-end
congestion control for datacenter and WAN traffic
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Tail RPC Completion Time
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Annulus reduces tail RPC latency by 40% at 50% load
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Impact of Annulus on WAN Traffic
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Annulus results in less bursty WAN behavior when
contending with LAN
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* A new problem in datacenter congestion control arises when
high bandwidth WAN traffic competes with datacenter traffic

* Annulus makes the case for developing better direct signals
that reduce the reaction time and improve the performance

of WAN traffic when handling congestion inside the
datacenter network

* Multi-control loop algorithms can help address scenarios
where the path has significantly different types of bottlenecks
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