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ABSTRACT
Tra�c shaping, including pacing and rate limiting, is fundamental
to the correct and e�cient operation of both datacenter and wide
area networks. Sample use cases include policy-based bandwidth al-
location to �ow aggregates, rate-based congestion control algorithms,
and packet pacing to avoid bursty transmissions that can overwhelm
router bu�ers. Driven by the need to scale to millions of �ows and
to apply complex policies, tra�c shaping is moving from network
switches into the end hosts, typically implemented in so�ware in the
kernel networking stack.

In this paper, we show that the performance overhead of end-host
tra�c shaping is substantial limits overall system scalability as we
move to thousands of individual tra�c classes per server. Measure-
ments from production servers show that shaping at hosts consumes
considerable CPU and memory, unnecessarily drops packets, su�ers
from head of line blocking and inaccuracy, and does not provide
backpressure up the stack. We present Carousel, a framework that
scales to tens of thousands of policies and �ows per server, built from
the synthesis of three key ideas: i) a single queue shaper using time as
the basis for releasing packets, ii) �ne-grained, just-in-time freeing
of resources in higher layers coupled to actual packet departures, and
iii) one shaper per CPU core, with lock-free coordination. Our pro-
duction experience in serving video tra�c at a Cloud service provider
shows that Carousel shapes tra�c accurately while improving over-
all machine CPU utilization by 8% (an improvement of 20% in the
CPU utilization attributed to networking) relative to state-of-art de-
ployments. It also conforms 10 times more accurately to target rates,
and consumes two orders of magnitude less memory than existing
approaches.
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1 INTRODUCTION
Network bandwidth, especially across the WAN, is a constrained
resource that is expensive to overprovision [25, 28, 32].�is creates
an incentive to shape tra�c based on the priority of the application
during times of congestion, according to operator policy. Further,
as networks run at higher levels of utilization, accurate shaping to a
target rate is increasingly important to e�cient network operation.
Bursty transmissions from a �ow’s target rate can lead to: i) packet
loss, ii) less accurate bandwidth calculations for competing �ows,
and iii) increasing round trip times. Packet loss reduces goodput and
confuses transport protocols attempting to disambiguate fair-share
available-capacity signals from bursty tra�c sources. One could ar-
gue that deep bu�ers are the solution, but we �nd that the resulting
increased latency leads to poor experience for users. Worse, high
latency reduces application performance in common cases where
compute is blocked on, for example, the completion of an RPC. Simi-
larly, the performance of consistent storage systems is dependent on
network round trip times.

In this paper, we use tra�c shaping broadly to refer to either pacing
or rate limiting, where pacing refers to injecting inter-packet gaps
to smooth tra�c within a single connection, and rate limiting refers
to enforcing a rate on a �ow-aggregate consisting of one or more
individual connections.

While tra�c shaping has historically targeted wide area networks,
two recent trends bring it to the forefront for datacenter communica-
tions, which use end-host based shaping.�e �rst trend is the use of
�ne grained pacing by rate-based congestion control algorithms such
as BBR [17] and TIMELY [36]. BBR and TIMELY’s use of rate control
is motivated by studies that show pacing �ows can reduce packet
drops for video-serving tra�c [23] and for incast communication
patterns [36]. Incast arises from common datacenter applications
that simultaneously communicate with thousands of servers. Even
if receiver bandwidth is allocated perfectly among senders at coarse
granularity, simultaneous bursting to NIC line rate from even a small
subset of senders can overwhelm the receiver’s network capacity.

Furthermore, tra�c from end hosts is increasingly bursty, due to
heavy batching and aggregation. Techniques such as NIC o�oads
optimize for server CPU e�ciency — e.g., Transmission Segmenta-
tion O�oad [20] and Generic Receive O�oad [3]. Pacing reduces
burstiness, which in turn reduces packet drops at shallow-bu�ered
switches [22] and improves network utilization [14]. It is for these rea-
sons that BBR and TIMELY rely on pacing packets as a key technique
for precise rate control of thousands of �ows per server.
�e second trend is the need for network tra�c isolation across

competing applications or Virtual Machines (VMs) in the Cloud.
�e emergence of Cloud Computing means that individual servers
may host hundreds or perhaps even thousands of VMs. Each virtual
endpoint can in turn communicate with thousands of remote VMs,
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internal services within and between datacenters, and the Internet at
large, resulting in millions of �ows with overlapping bottlenecks and
bandwidth allocation policies. Providers use predictable and scal-
able bandwidth arbitration systems to assign rates to �ow aggregates,
which are then enforced at end systems. Such an arbitration can be
performed by centralized entities, e.g., Bandwidth Enforcer [32] and
SWAN [25], or distributed systems, e.g., EyeQ [30].

For example, consider 500 VMs on a host providing Cloud ser-
vices, where each VM communicates on average with 50 other virtual
endpoints.�e provider, with no help from the guest operating sys-
tem, must isolate these 25K VM-to-endpoint �ows, with bandwidth
allocated according to some policy. Otherwise, inadequate network
isolation increases performance unpredictability and canmake Cloud
services unavailable [11, 30].

Traditionally, network switches and routers have implemented
tra�c shaping. However, inside a datacenter, shaping in middleboxes
is not an easy option. It is expensive in bu�ering and latency, and
middleboxes lack the necessary state to enforce the right rate. More-
over, shaping in the middle does not help when bottlenecks are at
network edges, such as the host network stack, hypervisor, or NIC.
Finally, when packet bu�ering is necessary, it is much cheaper and
more scalable to bu�er near the application.
�erefore, the need to scale to millions of �ows per server while

applying complex policy means that tra�c shaping must largely be
implemented in end hosts. �e e�ciency and e�ectiveness of this
end-host tra�c shaping is increasingly critical to the operation of
both datacenter and wide area networks. Unfortunately, existing im-
plementations were built for very di�erent requirements, e.g., only
for WAN �ows, a small number of tra�c classes, modest accuracy
requirements, and simple policies.�rough measurement of video
tra�c in a large-scale Cloud provider, we show that the performance
of end-host tra�c shaping is a primary impediment to scaling a
virtualized network infrastructure. Existing end-host rate limiting
consumes substantial CPU and memory; e.g., shaping in the Linux
networking stack use 10% of server CPU to perform pacing (§3); shap-
ing in the hypervisor unnecessarily drops packets, su�ers from head
of line blocking and inaccuracy, and does not provide backpressure
up the stack (§3).

We present the design and implementation of Carousel, an im-
provement on existing, kernel-based tra�c shapingmechanism. Carousel
scales to tens of thousands of �ows and tra�c classes, and supports
complex bandwidth-allocation mechanisms for both WAN and dat-
acenter communications. We design Carousel around three core
techniques: i) a single queue shaper using time as the basis for sched-
uling, speci�cally, Timing Wheel [43], ii) coupling actual packet
transmission to the freeing of resources in higher layers, and iii) each
shaper runs on a separate CPU core, which could be as few as one
CPU. We use lock-free coordination across cores. Our production
experience in serving video tra�c at a Cloud service provider shows
that Carousel shapes tra�c e�ectively while improving the overall
machine CPU utilization by 8% relative to state-of-art implemen-
tations, and with an improvement of 20% in the CPU utilization
attributed to networking. It also conforms 10 times more accurately
to target rates, and consumes two orders of magnitude less memory
than existing approaches. While we implement Carousel in a so�ware
NIC, it is designed for hardware o�oad. By the novel combination of
previously-known techniques, Carousel makes a signi�cant advance
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Figure 1: Token Bucket Architecture: pre-�ltering with multiple token
bucket queues.

on the state-of-the-art shapers in terms of e�ciency, accuracy and
scalability.

2 TRAFFIC SHAPERS IN PRACTICE
In the previous section we established the need for at-scale shaping
at end hosts: �rst, modern congestion control algorithms, such as
BBR and TIMELY, use pacing to smooth bursty video tra�c, and
to handle large-scale incasts; second, tra�c isolation in Cloud is
critically dependent on e�cient shapers. Before presenting details
of Carousel, we �rst present an overview of the shapers prevalently
used in practice.

Nearly all of rate limiting at end hosts is performed in so�ware.
Figure 1 shows the typical rate limiter architecture, which we broadly
term as pre-�ltering with multiple token bucket queues. It relies on
a classi�er,multiple queues, token bucket shapers and/or a scheduler
processing packets from each queue. �e classi�er divides packets
into di�erent queues, each queue representing a di�erent tra�c ag-
gregate.1 A queue has an associated tra�c shaper that paces packets
from that queue as necessary. Tra�c shapers are synonymous with
token buckets or one of its variants. A scheduler services queues in
round-robin order or per service-class priorities.
�is design avoids head of line blocking, through a separate queue

per tra�c aggregate: when a token bucket delays a packet, all packets
in the same queue will be delayed, but not packets in other queues.
Other mechanisms, such as TCP Small Queues (TSQ) [4] in Linux,
provide backpressure and reduce drops in the network stack.

Below, we describe three commonly used shapers in end-host
stacks, hypervisors and NICs: 1) Policers; 2) Hierarchical Token
Bucket; and 3) FQ/pacing. �ey are all based on per-tra�c aggre-
gate queues and a token bucket associated with each queue for rate
limiting.

2.1 Policers
Policers are the simplest way to enforce rates. Policer implementa-
tions use token buckets with zero bu�ering per queue. A token bucket
policer consists of a counter representing the number of currently
available tokens. Sending a packet requires checking the request
against the available tokens in the queue.�e policer drops the packet
if too few tokens are available. Otherwise, the policer forwards the
packet, reducing the available tokens accordingly.�e counter is re-
�lled according to a target rate and capped by a maximum burst.�e
1Traffic aggregate refers to a collection of individual TCP flows being grouped
on a shaping policy.
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Figure 2: Architecture of Linux rate limiters.

rate represents the average target rate and the burst size represents
the tolerance for jitter, or for short-term deviation from the target
rate conformance.

2.2 Hierarchical Token Bucket (HTB)
Unlike Policers that have zero queueing, tra�c shapers bu�er packets
waiting for tokens, rather than drop them. In practice, related token
buckets are grouped in a complex structure to support advanced
tra�c management schemes. Hierarchical Token Bucket (HTB) [2]
in the Linux kernel Queueing Discipline (Qdisc) uses a tree organi-
zation of shapers as shown in Figure 2a. HTB classi�es incoming
packets into one of several tra�c classes, each associated with a to-
ken bucket shaper at a leaf in the tree. �e hierarchy in HTB is for
borrowing between leaf nodes with a common parent to allow for
work-conserving scheduling.
�e host enforcer in the Bandwidth Enforcer (BwE) [32] system is a

large-scale deployment of HTB. Each HTB leaf class has a one-to-one
mapping to a speci�c BwE task �ow group – typically an aggregate
of multiple TCP �ows. �e number of HTB leaf classes is directly
proportional to the number of QoS classes × destination clusters ×
number of tasks.

To avoid unbounded queue growth, shapers should be used with
a mechanism to backpressure the tra�c source.�e simplest form
of backpressure is to drop packets, however, drops are also a coarse
signal to a transport like TCP. Linux employs more �ne grained back-
pressure. For example, HTB Qdisc leverages TCP Small Queues
(TSQ) [4] to limit two outstanding packets for a single TCP �ow
within the TCP/IP stack, waiting for actual NIC transmission before
enqueuing further packets from the same �ow. 2 . In the presence of
�ow aggregates, the number of enqueued packets equals the num-
ber of individual TCP �ows × TSQ limit. If HTB queues are full,
subsequent arriving packets will be dropped.

2The limit is controlled via a knob whose default value of 128KB yields two
full-sized 64KB TSO segments.
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Figure 3: Policing performance for target throughput 1Gbps with di�er-
ent burst sizes. Policers exhibit poor rate conformance, especially at high
RTT.�e di�erent lines in the plot correspond to the con�guredburst size
in the token bucket.

2.3 FQ/pacing
FQ/pacing [5] is a Linux Qdisc used for packet pacing along with
fair queueing for egress TCP and UDP �ows. Figure 2b shows the
structure of FQ/pacing. �e FQ scheduler tracks per-�ow state in
an array of Red-Black (RB) trees indexed on �ow hash IDs. A de�cit
round robin (DRR) scheduler [41] fetches outgoing packets from the
active �ows. A garbage collector deletes inactive �ows.

Maintaining per-�ow state provides the opportunity to support
egress pacing of the active �ows. In particular, a TCP connection
sends at a rate approximately equal to cwnd/RTT, where cwnd is the
congestion window and RTT is the round-trip delay. Since cwnd
and RTT are only best-e�ort estimates, the Linux TCP stack conser-
vatively sets the �ow pacing rate to 2 × cwnd/RTT [6]. FQ/pacing
enforces the pacing rate via a leaky bucket queue [8], where sending
timestamps are computed from packet length and current pacing rate.
Flows with next-packet timestamps far into the future are kept in a
separate RB tree indexed on those timestamps. We note that pacing
is enforced at the granularity of TCP Segmentation O�oad (TSO)
segments.
�e Linux TCP stack further employs the pacing rate to automati-

cally size packets meant for TCP Segmentation O�oading.�e goal
is to have at least one TSO packet every 1ms, to trigger more frequent
packet sends, and hence better acknowledgment clocking and fewer
microbursts for �ows with low rates. TSO autosizing, FQ, and pacing
together achieve tra�c shaping in the Linux stack [18].

In practice, FQ/pacing and HTB are used either individually or in
tandem, each for its speci�c purpose. HTB rate limits �ow aggregates,
but scales poorly with the number of rate limited aggregates and the
packet rate (§3). FQ/pacing is used for pacing individual TCP con-
nections, but this solution does not support �ow aggregates. We use
Policers in hypervisor switch deployments where HTB or FQ/pacing
are too CPU intensive to be useful.

3 THE COST OF SHAPING
Tra�c shaping is a requirement for the e�cient and correct opera-
tion of production networks, but uses CPU cycles and memory on
datacenter servers that can otherwise be used for applications. In this
section, we quantify these tradeo�s at scale in a large Cloud service.

Policiers: Among the three shapers, Policers are the simplest and
cheapest.�ey have low memory overhead since they are bu�erless,
and they have small CPU overhead because there is no need to sched-
ule or manage queues. However, Policers have poor conformance to
the target rate. Figure 3 shows that as round-trip time (RTT) increases,
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Figure 4: Impact of FQ/pacing on a popular video service. Retransmis-
sion rate on paced connections is 40% lower than that on non-paced con-
nections (lower plot). Pacing consumes 10% of total machine CPU at the
median and the tail (top plot). �e retransmission rates and CPU usage
are recorded over 30 second time intervals over the experiment period.

Policers deviate by 10x from the target rate for two reasons: �rst by
dropping non-conformant packets, Policers lose the opportunity to
schedule them at a future time, and resort to emulating a target rate
with on/o� behavior. Second, Policers trigger poor behavior from
TCP, where even modest packet loss leads to low throughput [21] and
wasted upstream work.

To operate over a large bandwidth-delay product, Policers require
a large con�gured burst size, e.g., on the order of the �ow round-
trip time. However, large bursts are undesirable, due to poor rate
conformance at small time scales, and tail dropping at downstream
switches with shallow bu�ers. Even with a burst size as large as one
second, Figure 3 shows that the achieved rate can be 5x below the
target rate, for an RTT of 100ms using TCP CUBIC.

Pacing: FQ/pacing provides good rate conformance, deviating at
most 6% from the target rate (§7), but at the expense of CPU cost.
To understand the impact on packet loss and CPU usage, we ran an
experiment on production video servers where we turn o� FQ/pacing
on 10 servers, each serving 37Gbps at peak across tens of thousands
�ows. We instead con�gured a simple PFIFO queueing discipline
typically used as the default low overhead Qdisc [1]. We ensured that
the experiment and baseline servers have the same machine con�gu-
ration, are subject to similar tra�c load, including being under the
same load balancers, and ran the experiments simultaneously for one
week.

Figure 4 compares the retransmission rate and CPU utilization
with and without FQ/pacing (10 servers in each setting).�e upside
of pacing is that the retransmission rate on paced connections is 40%
lower than those on non-paced connections.�e loss-rate reduction
comes from reducing self-in�icted losses, e.g., TSO or large conges-
tion windows.�e �ip side is that pacing consumes 10% of total CPU
on themachine at themedian and the tail (90th and 99th percentiles);
e.g., on a 64 core server, we could save up to 6 cores through more
e�cient rate limiting.

To demonstrate that the cost of pacing is not restricted to FQ/pacing
Qdisc or its speci�c implementation, we conduct an experiment with
QUIC [34] running over UDP tra�c. QUIC is a transport protocol
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designed to improve performance for HTTPS tra�c. It is globally
deployed at Google on thousands of servers and is used to serve
YouTube video tra�c. QUIC runs in user space with a packet pacing
implementation that performs MTU-sized pacing independent from
the kernel’s FQ/pacing. We experimented with QUIC’s pacing turned
ON and OFF. We obtained similar results with QUIC/UDP experi-
ments as we obtained with the kernel’s FQ/pacing. Figure 5 shows
the CPU consumption of a process generating approximately 8Gbps
QUIC tra�c at peak. With pacing enabled, process CPU utilization at
the 99th percentile jumped from 0.15 to 0.2 of machine CPU – a 30%
increase, due to arming and serving timers for each QUIC session.
Pacing lowered retransmission rates from 2.6% to 1.6%.

HTB: Like FQ/pacing, HTB can also provide good quality rate
conformance, with a deviation of 5% from target rate (§7), albeit at
the cost of high CPU consumption. CPU usage of HTB grows linearly
with the packets per second (PPS) rate. Figure 6 shows an experiment
with Netperf TCP-RR, request-response ping-pong tra�c of 1 Byte
in each direction, running with and without HTB.�is experiment
measures the overhead of HTB’s shaping architecture. We chose the
1-byte TCP-RR because it mostly avoids overheads other than those
speci�cally related to packets per second. In production workloads,
it is desirable for shapers (and more generally networking stacks)
to achieve high PPS rates while using minimal CPU. As the o�ered
PPS increases in Figure 6 (via the increase in the number of TCP-RR
connections on the x-axis), HTB saturates the machine CPU at 600K
transactions/sec. Without HTB, the saturation rate is 33% higher at
800K transactions/sec.
�e main reason for HTB’s CPU overhead is the global Qdisc lock

acquired on every packet enqueue. Contention for the lock grows
with PPS. [15] details the locking overhead in Linux Qdisc, and the
increasing problems posed as links scale to 100Gbps. Figure 7 shows
HTB statistics from one of our busiest production clusters over a
24-hour period. Acquiring locks in HTB can take up to 1s at the 99th
percentile, directly impacting CPU usage, rate conformance, and
tail latency. �e number of HTB classes at any instant on a server
is tens of thousands at the 90th percentile, with 1000-2000 actively
rate limited.
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Memory:�ere is also amemory cost related to tra�c shaping: the
memory required to queue packets at the shaper, and the memory to
maintain the data structures implementing the shaper. Without back-
pressure to higher level transports like TCP, the memory required to
queue packets grows with the number of �ows × congestion window,
and reaches a point where packets need to be dropped. Figure 8 shows
the number of packets at a rate limiter in the absence of backpressure
for a Cloud VM that has a single �ow being shaped at 2Gbps over
a 50ms RTT path. In the 99th percentile, the queue of the shaper
has 21 thousand MTU size packets (or 32 MB of memory) because
of CUBIC TCP’s large congestion window, adding 120ms of latency
from the additional bu�ering. In the presence of backpressure (§5),
there will be at most two TSO size worth of packets or 85 MTU sized
packets3 (or 128KB of memory), i.e., two orders of magnitude less
memory.

A second memory cost results from maintaining the shaper’s data
structures.�e challenge is partitioning and constraining resources
such that there are no drops during normal operation; e.g., queues
in HTB classes can be con�gured to grow up to 16K packets, and
FQ/pacing has a global limit of 10K packets and a per queue limit
of 1000 packets, a�er which the packets are dropped even if there is
plenty of global memory available. With poorly tuned con�gurations,

3We assume maximum TSO size of 64KB and MTU size of 1.5KB.
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packets within a queue may be dropped even while there is plenty of
room in the global pool.

Summary:�e problem with HTB and FQ/pacing is more than
just accuracy or timer granularities. �e CPU ine�ciency of HTB
and FQ/pacing is intrinsic to these mechanisms, and not the result of
poor implementations.�e architecture of these shapers is based on
synchronization across multiple queues and cores, which increases
the CPU cost:

1)�e token bucket architecture of FQ/pacing and HTB necessi-
tates multiple queues, with one queue per rate limit to avoid head
of line blocking.�e cost of maintaining these queues grows, some-
times super-linearly, with the number of such queues. CPU costs
stem from multiple factors, especially the need to poll queues for
packets to process. Commonly, schedulers either use simple round-
robin algorithms, where the cost of polling is linear in the number of
queues, or more complex algorithms tracking active queues.

2) Synchronization across multiple cores: Additionally, the cost
on multi-CPU systems is dominated by locking and/or contention
overhead when sharing queues and associated rate limiters between
CPUs. HTB and FQ/pacing acquire a global lock on a per-packet
basis, whose contention gets worse as the number of CPUs increases.

Solving these problems requires a fundamentally di�erent ap-
proach, such as the one we describe in the following sections. Today,
practitioners have a di�cult choice amongst rate limiters: Policers
have high CPU/memory e�ciency but unacceptable shaping perfor-
mance. HTB and FQ/pacing have good shaping properties, but fairly
high CPU and memory costs. Figure 9 summarizes this tradeo�. 10%
CPU overhead from accurate shaping can be worth the additional
network e�ciency, especially for WAN transfers. Now, the question
becomes whether we can get the same capability with substantially
less CPU overhead.

4 CAROUSEL DESIGN PRINCIPLES
Our work begins with the observation that a uni�ed, accurate, and
CPU-e�cient tra�c shaping mechanism can be used in a variety of
important settings. Our design principles follow naturally from the
following requirements:
1)Work compatiblywithhigher level congestion controlmechanisms
such as TCP.

a)Pace packets correctly: avoid bursts and unnecessary delays.
b) Provide backpressure and avoid packet drops: delaying pack-

ets because of rate limiting should quickly result in slowing down
the end application. Each additional packet generated by the appli-
cation will otherwise need to be bu�ered or dropped in the shaper,
wasting memory and CPU to either queue or regenerate the packet.
Additionally, loss-based congestion control algorithms o�en react to



SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA A. Saeed et al.

packet loss by signi�cantly slowing down the corresponding �ows,
requiring more time to reach the original bandwidth.

c) Avoid head of line blocking: shaping packets belonging to a
tra�c aggregate should not delay packets from other aggregates.
2) Use CPU and memory e�ciently: Rate limiting should consume
a very small portion of the server CPU and memory. As implied by
§3, this means avoiding the processing overhead of multiple queues,
as well as the associated synchronization costs across CPUs in multi-
core systems.

We �nd that these requirements are satis�ed by a shaper based on
three simple tenets:
1. Single Queue Shaping (§5.1): Relying on a single queue to shape
packets alleviates the ine�ciency and overhead with multi-queue
systems which use token buckets, because these require a queue
per rate limit. We employ a single queue indexed by time, e.g., a
Calendar Queue [16] or Timing Wheel [43]. We insert all packets
from di�erent �ows into the same queue and extract them based on
their transmission schedule. We set a send-time timestamp for each
packet, based on a combination of its �ow’s rate limit, pacing rate,
and bandwidth sharing policy.
2. Deferred Completions (§5.2):�e sender must limit the number
of packets in �ight per �ow, potentially using existing mechanisms
such as TCP Small Queues or the congestion window. Consequently,
there must be a mechanism for the network stack to ask the sender
to queue more packets for a speci�c �ow, e.g., completions or ac-
knowledgments. With appropriate backpressure such as Deferred
Completions described in §5.2, we reduce both HoL blocking and
memory pressure. Deferred Completions is a generalization of the
layer 4 mechanism of TCP Small Queues to be a more general layer
3 so�ware switch mechanism in a hypervisor/container so�ware
switch.
3. Silos of one shaper per-core (§5.3): Siloing the single queue
shaper to a core alleviates the CPU ine�ciency that results from
locking and synchronization. We scale to multi-core systems by us-
ing independent single-queue shapers, one shaper per CPU. Note
that a system can have as few as one shaper assigned to a speci�c
CPU, i.e. not every CPU requires a shaper. To implement shared
rates across cores we use a re-balancing algorithm that periodically
redistributes the rates across CPUs.

Figure 10 illustrates the architecture using Timing Wheel and
Deferred Completions. Deferred Completions addresses the �rst of
the requirements on working compatibly with congestion control.
Deferred Completions allows the shaper to slow down the source, and
hence avoids unnecessary drops and mitigates head of line blocking.
Additionally, Deferred Completions also allows the shaper to bu�er
fewer packets per �ow, reducing memory requirements.�e use of a
single Timing Wheel per core makes the system CPU-e�cient, thus
addressing the second requirement.

Carousel is a more accurate and CPU-e�cient than state-of-art
token-bucket shapers. Carousel’s architecture of a single queue per
core, coupled with Deferred Completions can be implemented any-
where below the transport, in either so�ware or NIC hardware.

To demonstrate the bene�ts of our approach, we explore shaping
egress tra�c, in §5 using Deferred Completions for backpressure,
and shaping ingress incast tra�c at the receiver, in §6 using ACKs
deferral for backpressure.
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Figure 10: Carousel architecture.

5 THE CAROUSEL SYSTEM
Carousel shaping consists of three sequential steps for each packet.
First, the network stack computes a timestamp for the packet. Second,
the stack enqueues the packet in a queue indexed by these timestamps.
Finally, when the packet’s transmission deadline passes, the stack
dequeues the packet and delivers a completion event, which can then
transmit more packets.

We implement Carousel in a so�ware NIC in our servers. So�ware
NICs dedicate one or more CPU cores for packet processing, as
inSo�NIC and FlexNIC [24, 31]. Our so�ware NIC operates in busy-
wait polling mode. Polling allows us to check packet timestamps
at high frequency, enabling accurate conformance with the packets’
schedules. Polling also assists in CPU-e�cient shaping, by alleviating
the need for locking, and for timers for releasing packets.

We note that So�ware NICs are not a requirement for Carousel,
and it is possible to implement Carousel in the kernel. However, an
implementation in the kernel would not be a simple modi�cation
of one of the existing Queuing Disciplines [10], and would require
re-engineering the kernel’s Qdisc path.�is is because the kernel is
structured around parallelism at the packet level, with per-packet
lock acquisitions, which does not scale e�ciently to high packet rates.
Our approach is to replicate the shaping-related data structure per
core, and to achieve parallelism at the level of �ows, not at the level
of a shared shaper across cores. Since So�ware NICs already uses
dedicated cores, it was easy to rapidly develop and test a new shaper
like Carousel, which is a testament to their value.

5.1 Single Queue Shaping
We examine the two steps of emulating the behavior of multiqueue
architecture using a single time-indexed queue while improving CPU
e�ciency.

5.1.1 Timestamp Calculation. Timestamp calculation is the
�rst step of tra�c shaping in Carousel. Timestamp of a packet de-
termines its release time, i.e., the time at which packet should be
transmitted to the wire. A single packet can be controlled by multiple
shaping policies, e.g., transport protocol pacing, per-�ow rate limit,
and aggregate limit for the �ow’s destination. In typical settings, these
policies are enforced independently, each at the point where the pol-
icy is implemented in the networking stack. Carousel requires that at
each point a packet is timestamped with transmission time according
to the rate at that point rather than enforcing the rate there. Hence,
these policies are applied sequentially as the packet trickles down
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the layers of the networking stack. For example, the TCP stack �rst
timestamps each packet with a release time to introduce inter-packet
gaps within a connection (pacing); subsequently, di�erent rate lim-
iters in the packet’s path modify the packet’s timestamp to conform
to one or more rates corresponding to di�erent tra�c aggregates.
�e timestamping algorithm operates in two steps: 1) timestamp

calculation based on individual policies, such as pacing and rate
limiting, and 2) consolidation of the di�erent timestamps, so that
the packet’s �nal transmission time adheres to the overall desired
behavior.�e packet’s �nal timestamp can be viewed as the Earliest
Release Time (ERT) of the packet to the wire.

Setting Timestamps: Both pacing and rate limiting use the same
technique for calculating timestamps. Timestamps can be set as either
relative timestamps, i.e., transmit a�er a certain interval relative to
now, or the absolute wall time timestamps, i.e., transmit at a certain
time. In our implementation, we use the latter. Both pacing and rate
limiting force a packet to adhere to a certain rate: 2×cwnd/RTT for
pacing, and a target rate for rate limiting. In our implementation,
the timestamp for pacing is set by sender’s TCP, and that for target
rate is set by a module in the So�ware NIC, which receives external
rates from centralized entities. Policy i enforces a rate R i and keeps
track of the latest timestamp it creates, LTS i . �e timestamp for
the jth packet going through the i th policy, P i

j is then calculated
as: LTS′i = LTS i + l en(P i

j )/R i . Timestamps are thus advanced on
every packet. Note that packets through a policy can belong to the
same �ow, e.g., in the case of pacing, or multiple �ows, e.g., in case
of rate limiting �ow aggregates. Packets that are neither paced nor
rate limited by any policy carry a timestamp of zero.

Consolidating Timestamps: Consolidation is straightforward,
since larger timestamps represent smaller target rates. In the course
of a packet’s traversal through multiple policies, we choose the largest
of timestamps, which avoids violating any of the policies associated
with the packet. Note that the e�ective �nal calculation of a �ow’s rate
is equivalent to a series of token buckets, as the slowest token bucket
ends up dominating and slowing a �ow to its rate. We also note
that Carousel is not a generic scheduler. Hence, this consolidation
approach will not work for all scheduling policies (further discussed
in Section 8).

5.1.2 Single Time-indexed Queue. One of the main compo-
nents of Carousel is Timing Wheel [43], an e�cient queue slotted
by time and a special case of the more generic Calendar Queue [16].
�e key di�erence is that Calendar Queue has O(1) amortized inser-
tion and extraction but can be O(N) in skewed cases.�e constant
for O(1) in Timing Wheel is smaller than that of Calendar Queue.
A Calendar Queue would provide exact packet ordering based on
timestamps even within a time slot, a property that we don’t strictly
require for shaping purposes.

A Timing Wheel is an array of lists where each entry is a times-
tamped packet.�e array represents the time slots from now till the
precon�gured time horizon, where each slot represents a certain
time range of size gmin within the overall horizon, i.e., the mini-
mum time granularity.�e array is a circular representation of time,
as once a slot becomes older than now and all its elements are de-
queued, the slot is updated to represent now + horizon.�e number
of slots in the array is calculated as hor izon

gmin
. Furthermore, we allow

Algorithm 1 Timing Wheel implementation.
1: procedure Insert(Packet, Ts)
2: Ts = Ts/Granularity
3: if Ts <= FrontTimestamp then
4: Ts = FrontTimestamp
5: else if Ts > FrontTimestamp +NumberO f Slots − 1 then
6: Ts = FrontTimestamp + NumberO f Slots − 1
7: end if
8: TW[Ts%NumberO f Slots].append(Packet)
9: end procedure
10: procedure Extract(now)
11: now = now/Granularity
12: while now >= FrontTimestamp do
13: if TW[now%NumberO f Slots].empty() then
14: FrontTimestamp+ = Granularity
15: else
16: return TW[now%NumberO f Slots].PopFront()
17: end if
18: end while
19: return Null
20: end procedure

extracting packets every gmin . Within the gmin period, packets are
extracted in FIFO order. �e Timing Wheel is suitable as a single
time-indexed queue operated by Carousel. We seek to achieve line
rate for the aggregate of tens of thousands of �ows. Carousel relies on
a single queue to maintain line rate i.e. supporting tens of thousands
of entries with minimal enqueue and dequeue overhead.�e Timing
Wheel’s O(1) operations makes it a perfect design choice.

With the Timing Wheel, Carousel keeps track of a variable now
representing current time. Packets with timestamps older than now
do not need to be queued and should be sent immediately. Fur-
thermore, Carousel allows for con�guring horizon, the maximum
between now and the furthermost time that a packet can be queued
upto. In particular, if rmin represents the minimum supported rate,
lmax is the maximum number of packets in the queue belonging to
the same aggregate that is limited to rmin , then the following rela-
tion holds: horizon = lmax

rmin
seconds. As Carousel is implemented

within a busy polling system, the So�ware NIC can visit Carousel
with a maximum frequency of fmax , due to having to execute other
functions associated with a NIC.�is means that it is unnecessary to
have time slots in the queue representing a range of time smaller than

1
fmax

, as this granularity will not be supported. Hence, the minimum
granularity of time slots is gmin = 1

fmax
.

An example con�guration of the Timing Wheel is for a minimum
rate of 1.5Mbps for 1500B packet size, slot granularity of 8us, and a
time horizon of 4 seconds.�is con�guration yields 500K slots, calcu-
lated as hor izon

gmin
.�e minimum rate limit or pacing rate supported is

one packet sent per time horizon, which is 1.5Mbps for 1500B packet
size. �e maximum supported per-�ow rate is 1.5Gbps. �is cap
on maximum rate is due to the minimum supported gap between
two packets of 8µs and the packet size of 1500B. Higher rates can be
supported by either increasing the size of packets scheduled within a
slot (e.g., scheduling a 4KB packet per slot increases the maximum
supported rate to 4Gbps), or by decreasing the slot granularity.
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We note that Token Bucket rate limiters have an explicit con�gura-
tion of burst size that determines the largest line rate burst for a �ow.
Such a burst setting can be realized in Carousel via timestamping
such that no more than a burst of packets are transmitted at line rate.
For example, a train of consecutive packets of a total size of burst
can be con�gured to be transmitted at the same time or within the
same timeslot.�is will create a burst of that size.

Algorithm 1 presents a concrete implementation of aTimingWheel.
�ere are only two operations: Insert places a packet at a slot de-
termined by the timestamp and ExtractNext retrieves the �rst
enqueued packet with a timestamp older than the current time, now.
�is allows the Timing Wheel to act as a FIFO if all packets have a
timestamp of zero. All packets with timestamp older than now are
inserted in the slot with the smallest time.

We have two options for packets with a timestamp beyond the
horizon. In the �rst option, the packets are inserted in the end slot that
represents the timing wheel horizon.�is approach is desirable when
only �ow pacing is the goal as it doesn’t drop packets, but instead
results in a temporary rate overshoot because of bunched packets
at the horizon.�e second approach is to drop packets beyond the
horizon, which is desired when imposing a hard rate limit on �ow,
and an overshoot is undesirable.

A straightforward Timing Wheel implementation supports O(1)
insertion and extraction where a list representing a slot is a dynamic
list, e.g., std::list in C++. Memory is allocated and deallocated
on every insertion and deletion within the dynamic list. Such mem-
ory management introduces signi�cant cost per packet. Hence, we
introduce a Global Pool of memory: a free list of nodes to hold packet
references. Timing Wheel allocates from the free list when packets
are enqueued. To further increase e�ciency, each free list node can
hold references to n packets. Preallocated nodes are assigned to dif-
ferent time slots based on need.�is eliminates the cost of allocation
and deallocation of memory per packet, and amortizes the cost of
moving nodes around over n packets. Freed nodes return to the
global pool for reuse by other slots based on need. §7 quanti�es the
Timing Wheel performance.

5.2 Deferred Completions
Carousel provides backpressure to higher layer transport without
drops, by bounding the number of enqueued packets per �ow. Oth-
erwise, the queue can grow substantially, causing packet drops and
head of line blocking.�us, we needmechanisms in the so�ware NIC
or the hypervisor to properly signal between Carousel and the source.
We study two such approaches in detail: Deferred Completions and
delay-based congestion control.

Completion is a signal reported from the driver to the transport
layer in the kernel signaling that a packet le� the networking stack
(i.e. completed). A completion allows the kernel stack to send more
packets to the NIC.�e number of packets sent by the stack to the
NIC is transport dependent, e.g., in the case of TCP, TSQ [4] ensures
that the number of packets outstanding between the stack and the
generation of a completion is at most two segments. Unreliable pro-
tocols like UDP could in theory generate an arbitrary number of
packets. In practice, however, UDP sockets are limited to 128KB of
outstanding send data.

Transport 
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Software NIC

Shaper dequeue

Completion signal

packet

NetworkDriver
virtio

(a) Immediate Completions

Software NIC

Carousel
dequeue

Deferred Completion signal

packet

Transport emits one 
more packet (TSQ)

Transport 
Stack

(Guest Kernel)

NetworkDriver
virtio

(b) Deferred Completions

Figure 11: Illustration of Completion signaling. In (a), a large backlog
can build up to substantially overwhelm the bu�er, leading to drops and
head-of-line blocking. In (b), only two packets are allowed in the shaper
and once a packet is released another is added. Indexing packets based on
time allows for interleaving packets.

�e idea behind Deferred Completions, as shown in Figure 11, is
holding the completion signal until Carousel transmits the packet to
the wire, preventing the stack from enqueueing more packets to the
NIC or the hypervisor. In Figure 11a, the driver in the guest stack
generates completion signals at enqueue time, thus overwhelming
the Timing Wheel with as much as a congestion window’s worth
of packets per TCP �ow, leading to drops past the Timing Wheel
horizon. In Figure 11b, Carousel in So�ware NIC returns the com-
pletion signal to the guest stack only a�er packet is dequeued from
the Timing Wheel, and thus strictly bounds the number of packets
in the shaper, since the transport stack relies on completion signals
to enqueue more packets to Qdiscs.

Implementing Deferred Completions requires modifying the way
completions are currently implemented in the driver. Completions
are currently delivered by the driver in the order in which packets
arrive at the NIC, regardless of their application or �ow. Carousel
can transmit packets in an order di�erent from their arrival because
of shaping. �is means that a �ow could have already transmitted
packets to the wire, but be blocked because the transport layer has not
received its completion yet. Consider a scenario of two competing
�ows, where the rate limit of one �ow is half of the other. Both �ows
deliver packets to the shaper at the same arrival rate. However, packets
of the faster �ow will be transmitted at a higher rate.�is means that
packets from the faster �ow can arrive at the shaper later than the
packets from the slow �ow and yet be transmitted �rst.�e delivery
rate of completion signals will need to match the packet transmission
rate, or else the fast �ow will be unnecessarily backpressured and
slowed down. Ordered completion delivery can cause head of line
blocking, hence we implemented out-of-order completions in the
driver of the guest kernel.

We implement out-of-order completions by tracking of all the
packets still held by Carousel, in a hashmap in the guest kernel driver.
On reception of a packet from guest transport stack, the So�wareNIC
enqueues the reference to that packet in the hashmap. WhenCarousel
releases the packet to the network, the So�ware NIC generates a
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completion signal, which is delivered to the guest transport stack
and allows removal of the packet from the hashmap.�e removal of
the packet from the hashmap is propagated up in the stack, allowing
TSQ to enqueue another packet [19]. �is requires changing both
the driver and its interface in the guest kernel, i.e., virtio [40].

Carousel is implemented within a So�ware NIC that relies on
zero-copy to reduce memory overhead within the NIC.�is becomes
especially important in the presence of Carousel, because when the
So�ware NIC shapes tra�c, it handles more packets as it would
without any shaping. Hence, the Timing Wheel carries references
(pointers) to packets and not the actual packets themselves.�emem-
ory cost incurred is thus roughly the cost of the number of references
held in Carousel, while the packet memory is fully attributed to the
sending application until the packet is sent to the wire (completed).
In practice, this means that for every one million of packets outstand-
ing in the Timing Wheel our so�ware NIC needs to allocate only in
the order of 8MB of RAM.�e combination of Deferred Completions
and holding packet references provides backpressure while using only
a small memory footprint.

Delay-based Congestion Control (CC) is an alternative form of
backpresssure to Deferred Completions. Delay-based CC senses the
delay introduced in the shaper, and modulates TCP’s congestion win-
dow to a smaller value as the RTT increases.�e congestion window
serves as a limit on the number of packets in TimingWheel. We note
that delay-based CC should discount the pacing component of the
delay when computing the RTT. Operating with an RTT that includes
pacing delay introduces undesirable positive feedback loops that re-
duce throughput. On the other hand, for Retransmission Timeout
(RTO) computations, it is crucial that pacing delay be included, so as
to avoid premature �ring of the RTO timer. §7 provides a comparison
across backpressure mechanisms.

5.3 Scaling Carousel with multiple cores
So far we have described the use of a single Timing Wheel per CPU
core to shape tra�c. Using a single shaper in multi-core systems
incurs contention costs that would make the solution impractical.
It is easy to scale Carousel by using independent Timing Wheels,
one per CPU. For our approach, each TCP connection is hashed to a
single Timing Wheel. Using one shaper per core su�ce for pacing or
rate limiting individual �ows, and allows lock-free queuing of packets
to a NIC instance on a speci�c core.

However, this simple approach does not work for the case when
we want to shape multiple TCP connections by a single aggregate
rate, because the individual TCP connections land on di�erent cores
(through hashing) and hence are shaped by di�erent Timing Wheels.
We resolve this with two components:

1) NBA: Our implementation uses a NIC-level bandwidth alloca-
tor (NBA) that accepts a total rate limit for �ow-aggregates and re-
distributes each rate limit periodically to individual per-core Times-
tampers. NBA uses a simple water-�lling algorithm to achieve work-
conservation and max-min fairness.�e individual Timestampers
provide NBA with up-to-date �ow usage data as a sequence of (byte
count, timestamp of the byte count measurement) pairs; rate assign-
ments from NBA to Timestampers are in bytes per second. �e
water-�lling algorithm ensures that if �ows on one core are using less

than their fair share, then the extra is given to �ows on the remain-
ing cores. If �ows on any core have zero demand, then the central
algorithm still reserves 1% of the aggregate rate, to provide headroom
for ramping up.

2) Communication between NBA and per-core Timestampers:
Usage updates by Timestampers and the dissemination of rates by
NBA are performed periodically in a lazy manner. We chose lazy
updates to avoid the overhead of locking the data path with every
update.�e frequency of updates is a tradeo� between stability and
fast convergence of computed rates; we currently use ≈100ms.

6 CAROUSEL AT THE RECEIVER
We apply the central tenets discussed in §4 to show how a receiver
can shape �ows on the ingress side. Our goal is to allow overwhelmed
receivers to handle incast tra�c through a fair division of bandwidth
amongst �ows [12].�e direct way of shaping ingress tra�c to queue
incoming data packets, which can consume considerable memory.
Instead, we shape the acknowledgements reported to the sender.
Controlling the rate of acknowledged data allows for �ne grained
control over the sender’s rate.
�e ingress shaping algorithm modi�es the acknowledgment se-

quence numbers in packets’ headers, originally calculated by TCP, to
acknowledge packets at the con�gured target rate. We apply Carousel
as an extension of DCTCP without modifying its behavior. �e al-
gorithm keeps track of a per �ow Last Acked Sequence Number
(SNa), Latest Ack Time (Ta), and Last Received Sequence Number
(SNr).�e �rst two variables keep track of the sequence number of
last-acknowledged bytes and the time that acknowledgement was
sent. For an outgoing packet from the receiver to the sender, we
check the acknowledgement number in the packet. We use that to
update SNr .�en, we change that number based on the following for-
mula: NewAckSeqNumber = min((now−Ta)×Rate+SNa , SNr).
We update Ta to now and SNa to NewAckSeqNumber, if SNa is
smaller thanNewAckSeqNumber. Acknowledgments are generated
by Carousel when no packet has been generated by the upper layer for
the time MTU

Rate .�e variable Rate is set either through a bandwidth
allocation system, or it is set as the total available bandwidth divided
by the number of �ows.

7 EVALUATION
We evaluate Carousel in small-scale microbenchmarks where all
shaped tra�c is between machines within the same rack, and in pro-
duction experiments on machines serving video content to tens of
thousands of �ows per server. We compare the overhead of Carousel
to HTB and FQ/pacing in similar settings and demonstrate that
Carousel is 8% more e�cient in overall machine CPU utilization
(20% more e�cient in CPU utilization attributable to networking),
and 6% better in terms of rate conformance, while maintaining simi-
lar or lower levels of TCP retransmission rates. Note that the video
serving system is just for the convenience of production experiments
in this section; the same shaping mechanisms are also deployed in
our network operations such as enforcing Bandwidth Enforcer (BwE)
rates.
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Figure 12: Comparison between Carousel, HTB, and FQ in their rate con-
formance for a single �ow.
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Figure 13: Comparison between Carousel, HTB, and HTB/FQ showing
the e�ect of the number of �ows load on their rate conformance to a target
rate of 5 Gbps.

7.1 Microbenchmark
Experiments setup: We conduct experiments for egress tra�c shap-
ing between two servers sharing the same top of rack switch. �e
servers are equipped with so�ware NIC on which we implemented
Carousel to shape tra�c. For baseline, servers run Linux with HTB
con�gured with 16K packets per queue; FQ/pacing is con�gured with
a global limit of 10K packets and a �ow limit of 1000 packets.�ese
settings follow from best practices. We generate tra�c with neper
[7], a network performance measurement tool that allows for gener-
ating large volumes of tra�c with up to thousands of �ows per server.
We vary RTT using netem. All reported results are for an emulated
RTT of 35ms. We found the impact of RTT on Carousel to be negligi-
ble. Experiments are run for 30 seconds each and enough number of
runs to make the standard deviation 1% or smaller. Unless otherwise
mentioned, the Timing Wheel granularity is two microseconds with
a horizon of two seconds.

7.1.1 Rate Conformance. Wemeasure rate conformance as
the absolute deviation from the target rate. �is metric represents
the deviation in bytes per second due to shaping errors. We measure
absolute deviation from target rate by collecting achieved rate samples
once every 100 milliseconds. We collect samples at the output of
the shaper, i.e., on the sender, as we want to focus on the shaper
behavior and avoid factoring in network impact on tra�c. Samples
are collected by using tcpdump where throughput is calculated by
measuring the amount of bytes sent every interval of 100milliseconds.

We compare Carousel’s performance to HTB and FQ/pacing: 1)
pacing is performed by FQ/pacing on a per-�ow basis where a maxi-
mumpacing rate is con�gured inTCPusingSO_MAX_PACING_RATE
[5], and 2) rate limiting where HTB enforces rate on a �ow aggregate.

Change target rate. We investigate rate conformance for a single
TCP connection. As the target rate is varied, we �nd that HTB and
FQ have a consistent 5% and 6% deviation between the target and
achieved rates (Figure 12). �is is due to their reliance on timers
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which �re at lower rates than needed for accuracy at high rates. For
instance, HTB’s timer �res once every 10ms. Carousel relies on ac-
curate scheduling of packets in busy-wait polling So�ware NIC, by
placing them in a Timing Wheel slot that transmits a packet within a
slot size of its scheduled time.

Vary the number of �ows. We vary the number of �ows in our
experiments between one and 10K, typical for user facing servers.
Figure 13 shows the e�ect of varying the number of �ows until 1000
�ows. Carousel is not impacted as it relies on the Timing Wheel
with O(1) insertion and extraction times. HTB maintains a constant
deviation of 5% from the target rate. However, FQ/pacing conformity
signi�cantly drops beyond 200 �ows.�is is due to the limited num-
ber of per-queue and global packet limits. However, increasing this
number signi�cantly increases its CPU overhead due to its reliance
on RB-trees for maintaining �ows and packets schedules [5].

7.1.2 Memory Efficiency. We compare memory e�ciency of
Deferred Completions and delay-based CC as backpressure schemes
(§5.2). We use the metric of number of packets held in the shaper,
which directly re�ects the memory allocation expected from the
shaper along with the possibility of packet drops as memory demand
exceeds allocation. We collect samples of the number of packets every
time a new packet is extracted from the shaper.

Change target rate. Figure 14 shows that with Deferred Comple-
tions, the average of number of packets in the Carousel is not a�ected
by changes in the target rate. While delay-based CCmaintains similar
average number of packets like in Deferred Completions, it has twice
the number of packets in the 99th percentile.�is is because delay
variations can grow the congestion window in Vegas to large values,
while Deferred Completions maintains a strict bound regardless of
the variations introduced by congestion control.�e bump in 99th
percentile at 1Gbps rate for Deferred Completions results from an
interaction of TSQ and TSO autosizing. Deferred Completions be-
havior is consistent regardless of the congestion control algorithm
used in TCP. Our experiments for Deferred Completions used TCP
Cubic in Linux.

Vary number of �ows. In Figure 15, we compare the number of
packets held in the shaper for a �xed target rate while varying the
number of �ows. In the absence of Deferred Completions, the �ows
continually send until all of the 70K memory in the shaper is �lled.
For Deferred Completions, the number of packets held in the shaper
is deterministic as approximately twice the number of active �ows.
�is is also re�ected in the 99th percentile of the number of packets
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Figure 17: An analytical behavior of the minimum supported rate for a
speci�c Timing Wheel horizon along with the required number of slots
for a slot size of two microseconds.

held. For delay-based CC, the median number of packets is higher
than the 99th percentile behavior of Deferred Completion. Further-
more, the 99th percentile of delay-based CC is less predictable than
that of the 99th percentile of Deferred Completions because it can be
a�ected by variations in RTT. We note that we didn’t observe any sig-
ni�cant di�erence in rate conformance between both approaches. We
�nd that Deferred Completion is the better backpressure approach
because of its predictable behavior.
�ere is no hard limit on the number of individual connections or

�ow aggregates that Carousel can handle. Carousel operates on the
references (pointers) to packets, which are small. Surely, we have to
allocate memory to hold the references, but in practice this memory
is a small fraction of memory available on the machine.

7.1.3 Impact of Timing Wheel Parameters. In §5, we choose
the TimingWheel due to it is high e�ciency and predictable behavior.
We study the e�ect of its di�erent parameters on the behavior of
Carousel.

Slot Granularity. Slot granularity controls the burst size and also
determines the smallest supported gap between packets which a�ects
the maximum rate that Carousel can pace at. Furthermore, for a
certain granularity to be supported, the Timing Wheel has to be
dequeued at least that rate. We investigate the e�ect of di�erent
granularities on rate conformance. Figure 16 shows that a granularity
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Number of Packets in Shaper 1000 4000 32000 256000 20000000
STDList (ns per packet) 22 21 21 21 22
Global Pool (ns per packet) 12 11 11 11 11
Table 1: Overheadper packet of di�erentTimingWheel implementations.

of 8-16µs su�ces to maintain a small deviation from the target rate.
We also �nd that rate conformity at larger slot granularities such as
4ms deviates by 300 Mbps which is comparable to the deviation of
HTB and FQ at the same target rate as shown in Figure 12.

Timing Wheel Horizon. �e horizon represents the maximum
delay a packet can encounter in shaper (hence minimum supported
rate), and is the product of slot granularity and number of slots. Fig-
ure 17, shows the minimum rate and the the number of slots needed
for di�erent horizon values, all for a granularity of two microsec-
onds. Note that results here assume that only one �ow is shaped by
Carousel which means that the horizon needs to be large enough to
accommodate the time gap between only two packets.

Deviation between Timestamp and Transmission Time. Fig-
ure 18 shows a CDF of the di�erence between the scheduled trans-
mission time of the packet and the actual transmission time of the
packet in nanoseconds. �is metric represents the accuracy of the
Timing Wheel in how much it adheres to the schedules. Over 90%
of packets have deviations smaller than the slot granularity of two
microseconds, which occurs due to the rounding down error when
mapping packets with schedules calculated in nanoseconds to slots
of 2µs. Deviations that exceed a slot size due to excessive queuing
delay between the timestamper and the shaper are rare.

CPU Overhead of Timing Wheel. For a system attempting to
achieve line rate, every nanosecond counts for processing each packet.
�e Timing Wheel implementation is the most resource consuming
component in the system as the rest of the operations merely change
parts of the packet metadata. We explore two parameters that can
a�ect the delay per packet in the Timing Wheel implementation: 1)
the impact of the data structures used for representing a slot, and 2)
the number of packets held in the Timing Wheel. Table 1 shows the
impact of both parameters. It’s clear that because of the O(1) insertion
and extraction overhead, the Timing Wheel is not a�ected by the
number of packets or �ows.�e factor a�ecting the delay per packet
is the overhead of insertion and extraction of packets from each slot.
We �nd that implementing a slot data structure that avoids allocating
memory for every insertion, i.e., Global Pool (described in §5.1.2),
reduces the overhead of C++ std::list by 50%.

7.1.4 Carousel Impact at the Receiver. We evaluate the
receiver-based shaper in a scenario of 100:1 incast: 10 machines with
10 connections each send incast tra�c to one machine; all machines
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Carousel in all �ve machines in a US west coast site.

are located in the same rack. Unloaded network RTT is ≈10us, packet
size is 1500 Bytes, and experiment is run for 100 seconds. Senders use
DCTCP and Carousel to limit the throughput of individual incast
�ows. Figure 19 shows the rate conformance of Carousel for varying
aggregate rates enforced at the receiver.�e deviation of aggregate
achieved rate is within 1% of the target rate.

7.2 Production Experience
To evaluate Carousel with real production loads, we choose 25 servers
in �ve geographically diverse locations.�e servers are deployed in
twoUS locations (East andWest Coast), and three European locations
(Western and Eastern Europe). �ey are serving streaming video
tra�c from a service provider to end clients. Each server generates
up to 38Gbps of tra�c serving as many as 50,000 concurrently active
sessions. For comparison, the servers support both conventional
FQ/pacing in Linux kernel and Carousel implemented on so�ware
NIC like So�NIC [24].
�e metrics we use are: 1) retransmission rates, 2) server CPU

e�ciency, and 3) so�ware NIC e�ciency. To measure server CPU
e�ciency, we use Gbps/CPU metric which is the total amount of
egress tra�c divided by the total number of CPUs on a server and
then divided by their utilization. For example, if a server sends 18
Gbps with 72 CPUs that are 50% utilized on average, it is said to
have 18

72∗0.5 = 0.5Gbps/CPU e�ciency. We present only the data
for periods of use when server CPUs are more than 50% utilized
(approximately 6 hours every day). Peak periods is when e�ciency is
the most important because server capacity must be provisioned for
such peaks. Gbps/CPU is better than direct CPU load for measuring
CPU e�ciency. �is is because our production system routes new
client requests to the least loaded machines to maintain high CPU
utilization at all machines.�is load-balancing behavior means that
more e�cient machines will receive more client requests.

CPU e�ciency. In the interest of space, we do not show results
from all sites. Figure 20 shows the impact of Carousel on Gbps/CPU
metric on �ve machines in the West Coast site. Figure 21 compares
twomachines one using Carousel and the other using FQ/pacing. We
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pick these two machines speci�cally as they have similar CPU utiliza-
tion during ourmeasurement period.�is provides a fair comparison
for the Gbps/CPU by unifying the denominator which focuses on
how e�ciently the CPU is used to push data. At 50th and 90th per-
centiles, Carousel is 6.4% and 8.2% more e�cient (Gbps/CPU) in
serving tra�c. On 72-CPU machines this translates to saving an
average of 4.6 CPUs per machine. Considering that networking ac-
counts for ≈40% of the machine CPU, the savings are 16% and 20%
in the median and tail for CPU attributable to networking.�e two
machines exhibit similar retransmission rate which shows that using
Carousel maintains pacing value while signi�cantly reducing its cost.

Carousel on So�wareNIC.We examine the overhead of Carousel
on the so�ware NIC. Surprisingly, we �nd that moving pacing to
so�ware NIC in fact improves its performance. �e so�ware NIC
operates in spin-polling mode, consuming 100% of �xed number
of CPUs assigned to it.�e NIC reports the CPU cycles it spent in
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a spin loop and whether it did any useful work in that particular
loop (i.e. received a batch that has at least one packet, or there was
a packet emitted by timing wheel); the CPU cycles spent in useful
loops divided by the total number of CPU cycles in all loops is the
So�ware NIC utilization level. To measure so�ware NIC e�ciency,
we normalize observed throughput by so�ware NIC self-reported
utilization, thus deriving Gbps/So�NIC metric. Figure 22 shows
Gbps/So�NIC metric for pacing with FQ/pacing and Carousel. We
see that moving pacing to the so�ware NIC improves its e�ciency
by 12% (32.2 Gbps vs 28.8 Gbps per so�ware NIC).�e improved
e�ciency is from larger batching from kernel TCP stack to so�ware
NIC, because the pacing is moved from kernel to the NIC. Figure 23
shows cumulative batch sizes, including empty batches, for machines
serving production tra�c with pacing enforcement in kernel and
pacing enforcement in so�ware NIC. On average, non-empty packet
batch sizes increased by 57% (from an average batch size of 2.1 to an
average batch size of 3.3).

8 DISCUSSION
Application of Carousel in Hardware NICs: Some hardware de-
vices, such as Intel NICs [26, 27], provide support for rate limiting.
�e common approach requires one hardware queue per rate limiter,
where the hardware queue is bound to one or more transmit queues
in the host OS.�is approach heads in the direction of increasing
transmit queues in hardware which does not scale because of silicon
constraints. Hence, hardware rate limiters are restricted for use in
custom applications, rather than as a normal o�oad that the OS can
use.

With Carousel, the single queue approach is a sharp departure
from the trend of needing more number of hardware queues, and can
be implemented follows: 1) hardware is con�gured with one transmit
queue per CPU to avoid contention between the OS and the NIC; 2)
Classi�cation and rates on the hardware are con�gured via an API,
3) hardware is able to consume input packets, generate per-packet
timestamps based on con�gured rates, and enqueue them to Timing
Wheel, 4) dequeue packets that are due, 5) return the completion
event relative to the packet sent.

Limitations: Carousel does not serve as a generic packet scheduler
that can realize arbitrary packet schedules because the TimingWheel
does not support changing timestamps of already enqueued packets.
Some schedules such as Weighted Fair Queueing are supportable
with existing O(1) Enqueue / Dequeue operations, while preemptive
schedules such as strict priorities are not supportable.

A second challenge stems from the use of a single queue shaper
with timestamping of packets. �e challenge is how to make such
timestamping consistent when the timestamps are not set in one cen-
tralized place. An approach is to standardize all sources to set times-
tamps in nanoseconds (or microseconds) from the Unix epoch time.
Other challenges include handling timestamps from unsynchronized
CPU clocks, and timestamps that may be of di�erent granularities.

9 RELATEDWORK
Improving shaping e�ciency: SENIC and vShaper introduce hy-
brid so�ware/hardware shapers to reduce CPU overhead. SENIC
allows the host’s CPU to classify and enqueue packets while the NIC
is responsible for pulling packets when it is time to transmit them

[38]. vShaper allows for sharing queues across di�erent �ows by es-
timating the share each will take based on their demand [33]. In
contrast, Carousel relies on a single queue that can be implemented
e�ciently in either hardware or so�ware. Pacing was �rst suggested
to have a per-�ow timer which made pacing unattractive due to the
excessive CPU overhead [14]. FQ/pacing in the OS (§5) uses only one
timer and still imposes non-trivial CPU overhead (§3). By relying on
time-based queue, Carousel implements shaping more e�ciently and
accurately as packets are extracted based on their release times rather
than spending CPU cycles checking di�erent queues for packets that
are due.

New data structures for packet scheduling: Recently new data
structures in literature implement scheduling at line rate while saving
on memory and CPU. UPS presents Least Slack Time First-based
packet scheduling algorithm for routers [35].�e Push-In First-Out
Queue (PIFO) [42] is a priority queue that allows packets to be en-
queued into an arbitrary location in the queue (thus enabling pro-
grammable packet scheduling), but only dequeued from the head.
Timing Wheel is also a particular kind of PIFO. PIFO and UPS focus
on scheduling in switches which require work-conserving algorithms;
Carousel focuses on pacing and rate-limiting at end hosts which are
non work-conserving. Carousel is similar to VirtualClock [44] semi-
nal work in its reliance on transmission time to control tra�c. How-
ever, the focus in VirtualClock is on setting timestamps for speci�c
rates that can be speci�ed by a network controller. Carousel presents
a data structure that can e�ciently implement such techniques, and
extends timestamping to apply it for pacing and rate limiting. Fur-
thermore, Carousel relies on Deferred Completions to limit queue
length and avoid harmful interaction amongst �ows.

Consumers of shaping: Recent congestion control and band-
width allocation systems [13, 30, 32, 37, 39] include an implementation
for shaping, e.g., FQ/pacing for BBR [17], priority queue in TIMELY
[36], hardware token bucket queue in HULL [9], injecting void pack-
ets in Silo [29], and HTB [2] for BwE [32]. Most proposed techniques
rely on variations of token buckets to enforce rates. Carousel proposes
a system that combines both pacing and rate limiting to reduce mem-
ory and CPU overhead. TIMELY and HULL both strongly motivate
hardware implementation of pacers due to the overhead of so�ware
pacing. However, TIMELY presents a so�ware pacer that works on
a per �ow basis. �is requires keeping tack of �ow information at
the pacer which can be a large overhead in the data path. Carousel
requires each packet to only be annotated with a timestamp which
reduces the pacer overhead as the notion of �ows can be kept where
it is only required, e.g., TCP layer.

10 CONCLUSION
Even though tra�c shaping is fundamental to the correct and e�cient
operation of datacenters and WANs, deployment at scale has been
di�cult due to prohibitive CPU and memory overheads. We showed
in this paper that two techniques can help overcome scaling and
e�ciency concerns: a single time-indexed queue per CPU core for
packets, and management of higher-layer resources with Deferred
Completions. Scaling is further helped by a multicore-aware design.
Carousel is able to individually shape tens of thousands of �ows on a
single server with modest resource consumption.
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We believe the most exciting consequence of our work will be the
creation of novel policies for pacing, bandwidth allocation, handling
incast, andmitigation against DoS attacks. No longer arewe restricted
to cherry-picking handful of �ows to shape. We are con�dent that
our results with Carousel make a strong technical case for networking
stacks and NIC vendors to invest in the basic abstractions of Carousel.
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