
Toward Formally Verifying Congestion Control Behavior
Venkat Arun

*
, Mina Tahmasbi Arashloo

†
, Ahmed Saeed

*
, Mohammad Alizadeh

*
, Hari Balakrishnan

*

MIT CSAIL
*
and Cornell University

†

Email: ccac@mit.eduWebsite: https://projects.csail.mit.edu/ccac

ABSTRACT
The diversity of paths on the Internet makes it difficult for designers

and operators to confidently deploy new congestion control algo-

rithms (CCAs) without extensive real-world experiments, but such

capabilities are not available to most of the networking commu-

nity. And even when they are available, understanding why a CCA

under-performs by trawling through massive amounts of statistical

data from network connections is challenging. The history of con-

gestion control is replete with many examples of surprising and

unanticipated behaviors unseen in simulation but observed on real-

world paths. In this paper, we propose initial steps toward modeling

and improving our confidence in a CCA’s behavior. We have devel-

oped Congestion Control Anxiety Controller (CCAC),
1
a tool that

uses formal verification to establish certain properties of CCAs. It is

able to prove hypotheses about CCAs or generate counterexamples

for invalid hypotheses. With CCAC, a designer can not only gain

greater confidence prior to deployment to avoid unpleasant sur-

prises, but can also use the counterexamples to iteratively improve

their algorithm. We have modeled additive-increase/multiplicative-

decrease (AIMD), Copa, and BBR with CCAC, and describe some

surprising results from the exercise.

CCS CONCEPTS
•Networks→ Transport protocols; • Theory of computation
→ Automated reasoning;

KEYWORDS
Congestion Control, Formal Verification, Transport Protocols
ACM Reference Format:
Venkat Arun, Mina Tahmasbi Arashloo, Ahmed Saeed, Mohammad Alizadeh,
Hari Balakrishnan. 2021. Toward Formally Verifying Congestion Control
Behavior. In ACM SIGCOMM 2021 Conference (SIGCOMM ’21), August 23–
27, 2021, Virtual Event, USA. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3452296.3472912

1 INTRODUCTION
Innovations in Internet congestion control algorithms (CCAs) are
occurring at a rapid pace, spurred by evolving network technolo-
gies, a fast-changing application mix, and the rising importance

of quality-of-experience for users, who react negatively to poor
1
Because it helps control anxiety about whether a CCA will be robust in the field.
Pronounced “seek-ack” or “see-cack”.

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8383-7/21/08.
https://doi.org/10.1145/3452296.3472912

performance (e.g., by giving applications poor ratings or finding

alternatives). Performance matters not only in the mean, but also in

the tail statistics. In response, the research community and industry

have developed numerous innovative methods to improve conges-

tion control, because CCAs determine when packets are sent and

determine transport performance [3, 5, 14, 18, 19, 36, 49, 50, 52, 54].

A key problem in CCA development is evaluation: how can devel-

opers, operators, and the networking community gain confidence

in any given proposal? Real-world network paths exhibit a wide

range of complex behaviors due to token-bucket filters, rate lim-

iters, traffic shapers, network-layer packet schedulers with various

artifacts, link-layer schedulers that vary link rates, physical-layer

vagaries, link-layer acknowledgment (ACK) aggregation, higher-

layer ACK compression or aggregation, delayed ACKs, and more.

It is impossible even for seasoned engineers to contemplate the

composition of every “weird” thing that could happen along a path,

much less model or simulate these behaviors faithfully.

The process of evaluating and gaining confidence with a CCA

today involves some combination of simulation [1, 2], prototype im-

plementationwith tests on amodest number of emulated [13, 26, 39]

and real-world paths [53, 54], and, in some cases, empirical analysis

via controlled A/B tests at large content providers. Simulations and

small-scale tests are invaluable in the design and refinement stages,

but provide little confidence about performance on the trillions of

real-world paths.

If one has access to servers at a large content provider, then

A/B tests are feasible where a new CCA can be tried on a fraction

of the users to compare its performance with another scheme. If

the measured results of the new CCA compare well, it increases

confidence in its behavior, but still does not guarantee that it will

perform well in all scenarios. Moreover, as is likely, the new CCA

will not perform better in the A/B tests for all users. The aggregate

results of an A/B test may hide significant weaknesses that arise in

certain cases. When such cases are identified, understanding the

behavior of a CCA requires going a massive data analysis, which

may be futile because the operator might not have visibility into

the network conditions that led to poor performance. We also note

that most of the community does not work at a “hyperscaler” with

access to such a live-testing infrastructure, yet has good ideas that

deserve serious consideration.

In this paper, we propose initial steps to mitigate these issues.

We have developed the Congestion Control Anxiety Controller

(CCAC), pronounced “seek-ack” or “see-cack”. CCAC uses formal

verification to prove certain properties of CCAs. With CCAC, a user

can (1) express a CCA in first-order logic, (2) specify hypotheses

about the CCA for the tool to prove, and (3) test the hypothesis

in the context of the expressed CCA running in a customizable,

built-in path model. The user’s ingenuity is useful in expressing the

CCA and using CCAC to propose and iterate on useful hypotheses,

while CCAC will prove the hypothesis correct or find insightful

1

This work is licensed under a Creative Commons Attribution-
ShareAlike International 4.0 License.

https://projects.csail.mit.edu/ccac
https://doi.org/10.1145/3452296.3472912
https://doi.org/10.1145/3452296.3472912
https://doi.org/10.1145/3452296.3472912
https://creativecommons.org/licenses/by-sa/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA V. Arun et al.

counterexamples that disprove the hypothesis. A proof provides

confidence that the CCA will perform well under all conditions
consistent with the pathmodel. On the other hand, counterexamples

help in understanding corner cases mishandled by the CCA, and

can help the user improve its design. Our work aims to provide

an analytical tool that can capture unusual behaviors previously

accessible only through empirical methods.

CCAC relies on a built-in path model that captures the complex

sub-RTT behaviors observed on real network paths. The model

does not attempt to characterize specific behaviors, but is instead

constructed to capture the composition of a wide range of possi-

bilities, including token bucket filters and ACK aggregation. Thus,

a proof that a CCA satisfies a hypotheses with this model gives

us confidence that it will satisfy the hypothesis on a substantial

portion of real-world paths.

We have used CCAC to better understand classical AIMD, Copa,

and BBR. Our findings include:

• Sub-RTT variability and bursts in packet or ACK delivery cause

loss patterns and suboptimal performance in surprising ways

for even the well-studied AIMD scheme. For example, CCAC

found that it is possible to cause AIMD to transmit packets in a

burst right after it detects loss. This burst can cause another loss,

leading to severe under-utilization. CCAC also proved bounds

on when such bad behavior can occur.

• For Copa, CCAC proved that when there is only one jittery net-

work element on the path, utilization can drop to 50%, but no

lower. With a sequence of jittery network elements, however,

CCAC found that the worst-case throughput is near-zero!

• For BBR, CCAC found a network behavior that prevents BBR’s

bandwidth probe from discovering available bandwidth even

when it is available. Analyzing the example by hand, we propose

a fix that prevents CCAC from being able to force low utilization.

Facebook has independently adopted this fix in their implemen-

tation of BBR in mvfst [27], their implementation of QUIC [28].

In this paper, we focus on the worst-case behavior of a single end-

to-end congestion-controlled flow operating over complex network

paths, without considering in-network feedback control. We do

not consider inter-flow fairness propositions. We discuss these

limitations and future work in Section 9.

2 MOTIVATION
To appreciate what a formal verification tool like CCAC can do

to improve our understanding of CCAs, consider classical AIMD.

Standard textbook analysis assumes that loss occurs only when the

congestion window (cwnd) exceeds the bandwidth-delay product

(BDP) plus the buffer size. In practice, links like Wi-Fi use “frame

aggregation” to improve MAC-layer efficiency by sending packets

in bursts. These generate transport-layer ACK bursts. When ACKs

arrive in a burst, however, we know that the sender will respond

by sending new packets in a burst.
2
These bursts can cause packet

drops, under-utilizing the link, defeating the Wi-Fi mechanism.

CCAC not only models these issues, but it also identifies subtle

behaviors. For instance, CCAC uncovered a problem where AIMD

2
Burst transmissions can happen even with a paced sender, because implementations

(including the Linux kernel [38]) often pace packets faster than the estimated rate to

avoid under-utilization.

can send a burst of packets when it detects a large number of losses.

Ideally, this is the time to be conservative and avoid sending a burst!

Intuitively, one might expect this cannot happen because AIMD

would decrease its cwnd by half. CCAC generated a counterexample

that sidesteps this mitigation. In the counterexample, loss happens

in two steps. When the second burst of losses are detected, the cwnd
has already been halved once and will not be halved again since

the losses belong to the same window of data [22]. Instead, the loss

prompts a burst of packets from the sender, which triggers another

loss. These bursts are bad because they can cause under-utilization.

For example, AIMD can drop its cwnd twice in quick succession,

leading to utilization as low as 50% even when the buffer is as

large as 2 BDP. Although IETF RFCs have included mitigations for

similar situations, CCAC sidesteps those as well. We discuss this

counterexample in more detail in Section 7.

Prior mathematical methods of congestion control fail to char-

acterize these behaviors because they ignore complex sub-RTT

dynamics. We find that sub-RTT dynamics strongly influence the

performance of a CCA, sometimes degrading utilization by an order

of magnitude (see §6, §7 and, §8). CCAC fills this gap in our under-

standing of such behaviors. It uncovers surprising CCA behavior

that the user or designers of the CCA may not have anticipated. In

addition, it can help prove bounds on the performance of CCAs,

including on steady-state behavior.

To provide the machinery to reason about sub-RTT jitter and

packet/ACK dynamics, we need a framework that can capture a

wide range of network behavior and a systematic way to express

CCAs and hypotheses about them. Such a framework should be:

(1) expressive, capturing a wide range of networks, algorithms, and

network stacks;

(2) interpretable, providing formal proofs to support its findings or

counterexamples understandable by a human expert; and

(3) iterative, allowing the user to ask a wide range of queries about

the behavior of a CCA while iterating on the algorithm and

tuning/customizing network behavior.

Achieving these objectives, particularly proofs, requires the abil-

ity to examine an astronomically large number of network scenarios.

Fortunately, the formal verification community has been developing

automated tools for examining such large spaces for satisfiability

queries. These tools have been applied for verifying the correctness

of software and hardware. Automated theorem provers either prove

that the software has the desired behavior or give a counterexample

of an input that breaks the software [16]. In this paper, we introduce

a performance-as-correctness framework that applies these ideas to

congestion control.

3 OVERVIEW
CCAC allows the user to express a CCA in first-order logic, and

a hypothesis about performance properties as logical formulae.

Then, it uses an automated prover to do the bulk of the work. The

theorem prover either proves that the performance property always

holds under CCAC’s path model, or generates counterexamples

invalidating the hypothesis.

The path model. The model abstracts complex network paths

by a single path-server with a FIFO queue followed by a fixed delay,

leveraging ideas from Network Calculus [11, 33]. The path-server

2

Toward Formally Verifying Congestion Control Behavior SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

CCA specification:∧
𝑡 ((𝑙𝑜𝑠𝑠_𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑡 ∧ 𝑐𝑎𝑛_𝑑𝑒𝑐𝑟𝑡) ⇒ cwnd𝑡 = 1

2
cwnd𝑡−1)∧

𝑡 ((¬𝑙𝑜𝑠𝑠_𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑡 ∧ 𝑐𝑎𝑛_𝑖𝑛𝑐𝑟𝑡) ⇒ cwnd𝑡 = cwnd𝑡−1 + 𝛼)
Query:∨

𝑡 (𝑙𝑜𝑠𝑠_ℎ𝑎𝑝𝑝𝑒𝑛𝑒𝑑𝑡 ∧ cwnd𝑡 ≤ 1BDP)
buffer size = 2 BDP, max. jitter = 1 RTT

Figure 1: Query used to discover instances where AIMD can
cause loss prematurely. 𝑐𝑎𝑛_𝑖𝑛𝑐𝑟 and 𝑐𝑎𝑛_𝑑𝑒𝑐𝑟 prevent AIMD
from increasing/decreasing more than once per RTT.

introduces a variable delay per packet. It can choose when to trans-

mit or drop packets in its queue subject to certain constraints. The

constraints seek to emulate a link with a fixed average capacity
and a limited buffer, but allow for short-term deviation from this

average including an arbitrary per-packet delay jitter up to 𝐷 sec-

onds (§4.2). The user can use this model to reason about variable

capacity links as well (§4.4).

The power of this model is that, despite its simplicity, it cap-

tures a wide of range of underlying network-specific behaviors.

Importantly, we do not specify any probability distribution over

the path’s behavior. Thus, the path-server is non-deterministic,

but not random, restricting CCAC to worst-case analyses. This

decision was a conscious one, made for three reasons. First, the

probability distribution of link delays on the Internet is unknown,

ever-changing, and depends on one’s vantage point. Second, many

in-network processes such as ACK aggregation and token-bucket

filters are deterministic, not random. Third, we are often interested

in the performance on the long tail of low-quality links (paths),

whose behaviors would be buried by aggregate metrics. To our

knowledge, this paper presents the first analysis of worst-case CCA

behavior in such an expressive model.

Input to CCAC. A CCAC user expresses their CCA and prop-

erties of interest as first-order-logic formulae. In principle, such

formulae can represent any circuit, but CCAC’s ability to reason

about it depends on how the user expresses the CCA. Thus, the

user’s ingenuity is essential in expressing the CCA in a way that

enables automated reasoning. The user expresses a CCA as a func-

tion that maps past ACKs to a cwnd and/or rate. Further, they

express a property of the CCA as arbitrary constraints on the cwnd,
utilization, delay, or packet loss, connected by logical operators.

Examples of hypotheses (queries) include: “Does cwnd ever fall

below 90% of BDP in 8 RTTs?” and “Is there any case where the

queue length starts below 1.5 BDP, but increases beyond 1.5 BDP

within 20 RTTs?”

In §5, we show how we encode the description of the path-

server, the CCA, and hypotheses about the CCA as a Satisfiability

Modulo Theories (SMT) problem, allowing CCAC to use Z3 [16] as

its automated theorem prover.

CCAC’s Operation. Typically, the user will formulate queries

to capture bad CCA behavior. CCAC searches through all possible

behaviors of the path-server, subject to its constraints, to find a

network trace where the CCA fails to achieve the property. If a

trace exists, CCAC outputs it. Otherwise, CCAC outputs “unsat” in-

forming the user that no such bad behavior exists, which proves the

user’s hypothesis about the CCA. When the user finds bad behavior

using CCAC they can (a) live with it, (b) improve the algorithm

so that the bad behavior no longer exists, or (c) restrict the path-

server’s model to exclude the cases that trigger the bad behavior.

In the last case, the user will know what additional constraints on

the network are necessary for the CCA to work.

The user repeats this process until they are confident that they

understand the bounds on the performance of their CCA. However,

CCAC can only make statements over finite time horizons when

network parameters such as the link rate and propagation delay

are constant. This does not prove the CCA always exhibits good

behavior over arbitrarily long time horizons with varying network

parameters (e.g., varying link capacity). Nevertheless, the user can

prove these general long-term theorems by mathematical induction

over lemmas that CCAC can prove (see §7.2 for an example).

Example. Figure 1 shows the CCAC query used to discover

the behavior of AIMD discussed in the previous section. CCAC

evaluates the behavior of algorithms over a finite number of time

steps. The behavior of the algorithm is defined at every time step;

if loss (congestion) is detected and it has been an RTT since the last

reduction in cwnd, then halve cwnd. If no loss is detected for an

RTT, then increase cwnd by 𝛼 . The query asks if loss can happen

when cwnd is less than or equal to 1 BDP. CCAC answered “yes”

to this query and produced traces that contained the behaviors we

discussed for AIMD in §2, which we elaborate on in §7.

Assumptions. Because CCAC focuses on worst-case behavior,

a central goal of its design is to exclude excessively antagonistic be-

havior that no CCA can handle. Thus, the path model only includes

a carefully chosen subset of paths (see §4.2). Our model of TCP time-

outs is different from the standard for the same reason (see §4.3). We

represent network state using cumulative functions that preclude

the modeling of packet reordering. CCAC’s mechanism to detect

packet losses emulates endpoints that use an unbounded number

selective acknowledgment (SACK) blocks. This corresponds to the

QUIC protocol [28], while TCP is limited to a maximum of four

SACK blocks [34].

4 THE PATH MODEL
To create a model that captures a broad range of network behaviors,

we ensure it satisfies two properties. First, it can emulate known
behaviors such as ACK aggregation, token-bucket filters, and arbi-

trary per-packet delay up to 𝐷 seconds (see §4.2). Arbitrary delays

can be used to emulate scheduling errors, MAC scheduling artifacts,

and delay-measurement errors. Second, it composes; i.e., for any
two path-servers, there exists a path-server, perhaps with different

parameters, that can do anything that the two path-servers can do

when placed serially. Hence, the path-server can also emulate any

sequential composition of the above behaviors.

Our initial attempts at creating a general path model produced

models that were “too expressive” and allowed behaviors that no

CCA can handle. We discuss some of these behaviors and how

our final model avoids them in §4.2. We believe we have struck

a good balance between expressiveness and restricting unreason-

able behavior because CCAC produces network behaviors that are

plausible on real networks.

3

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA V. Arun et al.

Arriving pkts
Path

serverPacket Queue

Token Queue
C tokens/sec

Bottleneck queue

Sender

ACKs Constant Delay, Rm

Figure 2: CCAC’s path model.

𝐶 – link rate 𝑅𝑚 – propagation delay

𝛽 – buffer size 𝐷 – max per-packet jitter

𝛼 – MTU size dupacks (threshold) – 3𝛼

𝑇 – number of time steps cwnd (𝑡) – congestion window

𝑄 (𝑡) – packet queue length 𝑇 (𝑡) – token queue length

𝐴(𝑡) – cumulative arrivals 𝑆 (𝑡) – cumulative service

𝑊 (𝑡) – cumulative waste 𝐿(𝑡) – cumulative losses

𝐿𝑑 (𝑡) – cum. losses detected 𝜏𝑜 (𝑡) – timeout happened

Table 1: Glossary of symbols.

4.1 Model Specification
Intuition. The path-server can be described as a generalized token-

bucket filter (TBF) as shown in Figure 2. First, consider a regular

TBF. It has two queues, one for packets and another for tokens.

Tokens arrive continuously at a fixed rate of 𝐶 bytes/second and a

packet of size 𝑥 bytes can be dequeued only if the token queue has

at least 𝑥 bytes worth of tokens. If no packets arrive for a while,

tokens accumulate to a maximum of 𝐾 bytes. Any tokens that come

after the token queue is full are wasted. Then, if packets arrive
in a burst, the TBF can transmit a burst of up to 𝐾 bytes at once,

temporarily exceeding the link rate 𝐶 .

Our path-server generalizes this scheme.When a token arrives at

the token queue, the path-server can non-deterministically choose

to either admit it or waste it. Wasting is allowed only when there

are more tokens than the total number of bytes in the packet queue.

Like a TBF, when a packet is dequeued, a number of tokens equal

to the packet’s size are dequeued. However, unlike a TBF, the path-

server can choose to delay sending packets even when tokens are
available, subject to the constraint that once a token is admitted,

the token cannot be in the queue for more than 𝐷 seconds. This

mechanism gives the path-server 𝐷 seconds of slack to emulate

various network effects. In addition, the𝐷-second bound constrains

the maximum number of tokens to 𝐶 · 𝐷 .
Recall that the path-server models an entire path, not just the bot-

tleneck. Therefore, the packets in the path-server’s queue represent

packets enqueued throughout the path, not just at the bottleneck.

The bottleneck queue is represented by the difference between

the total number of bytes in the packet queue and the number of

available tokens. Hence, the server can waste tokens only if this

difference is ≤ 0, indicating that the bottleneck is empty.
3
To emu-

late a bottleneck buffer of 𝛽 bytes, the server drops packets when

the bottleneck queue exceeds 𝛽 bytes. The user can set 𝛽 to a finite

3
Note that if packets are arriving too slowly, the server is forced to waste tokens to

avoid keeping a token for more than 𝐷 seconds.

Queuing delayArrival curve, A(t)-L(t)

Service Curve, S(t)

D

Slope ≤ C

(wastage)

Slope = C

(no wastage)

Loss

Threshold

Loss

happened!

Buffer size, 𝛽

(A) (B)

(C) (D)

Rm

cwnd

dupacks

Loss
detected!

A(t) = S(t - Rm) + cwnd

Bounds on S(t)

Time

C
um

ul
at

iv
e

by
te

s

Time

C
um

ul
at

iv
e

by
te

s

Q(t)

T(t)

Figure 3: Graphical representation of the constraints.

value in units of BDP. The user can also set 𝛽 to ∞ or let CCAC

search over all its possible values to find one that satisfies the query.

Formal definition. Let 𝑄 (𝑡) and 𝑇 (𝑡) denote the number of

bytes in the packet and token queues, respectively. 𝐴(𝑡) denotes
the cumulative number of bytes that have arrived at the server

till time 𝑡 . Similarly 𝑆 (𝑡), 𝐿(𝑡), and𝑊 (𝑡) are the cumulative num-

ber of bytes serviced from the path-server, bytes lost, and tokens

wasted, respectively (see Table 1). A number of constraints bound

the behavior of the network, and therefore, these functions:

• Tokens arrive at rate 𝐶 bytes/s but at time 𝑡 , 𝑆 (𝑡) of them
have been used and𝑊 (𝑡) of them have been wasted. Hence,

𝑇 (𝑡) = 𝐶𝑡 −𝑊 (𝑡) − 𝑆 (𝑡).
• The queue length is the number of bytes that have arrived

but have not been serviced or lost. Hence, 𝑄 (𝑡) = 𝐴(𝑡) −
𝐿(𝑡) − 𝑆 (𝑡).
• Wastage can only happen when there are more tokens than

packets. That is, 𝑇 (𝑡) ≤ 𝑄 (𝑡) ⇒𝑊 ′(𝑡) = 0, where𝑊 ′(𝑡) is
the time derivative indicating how much waste occurred.

• Loss is disallowed unless the bottleneck queue, 𝑄 (𝑡) −𝑇 (𝑡),
exceeds 𝛽 bytes. Hence, 𝑄 (𝑡) −𝑇 (𝑡) < 𝛽 ⇒ 𝐿′(𝑡) = 0. We

also have 𝑄 (𝑡) −𝑇 (𝑡) ≤ 𝛽 .
• Naturally, 𝑄 (𝑡) ≥ 0 and 𝑇 (𝑡) ≥ 0 and the cumulative func-

tions 𝐴(𝑡), 𝑆 (𝑡), 𝐿(𝑡), and𝑊 (𝑡) are all non-decreasing. Since
wastage can happen only when tokens enter the queue,

𝐶𝑡 −𝑊 (𝑡) should also be non-decreasing.

• Finally, the server would not have admitted tokens if they

were going to stay in the queue for more than 𝐷 seconds.

Hence, all tokens that arrived 𝐷 seconds ago and were not

wasted must have been used by now. That is, 𝑆 (𝑡) ≥ 𝐶 ·
(𝑡 − 𝐷) −𝑊 (𝑡 − 𝐷). Together with 𝑇 (𝑡) > 0, we have that

𝐶 · (𝑡 − 𝐷) −𝑊 (𝑡 − 𝐷) ≤ 𝑆 (𝑡) ≤ 𝐶𝑡 −𝑊 (𝑡). These are the
bounds on the service curve, 𝑆 (𝑡).

Visualization. To make it easier to present examples of net-

work behavior in our model, we introduce a standard graphical

representation shown in Figure 3. The representation is akin to

TCP’s time sequence graph, where the 𝑥-axis represents time and

the 𝑦-axis represents the cumulative number of bytes arriving at

the path-server (i.e., arrival curve) or served from it (i.e., service

curve). Figure 3(A) illustrates a simple example with the arrival

curve in blue, the service curve in red, and the bounds on the service

curve in black. Note that 𝐴(𝑡) − 𝐿(𝑡) is the cumulative number of

bytes admitted to the queue. The horizontal gap between the black

4

Toward Formally Verifying Congestion Control Behavior SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

curves is 𝐷 . The horizontal gap between the arrival and service

curve represents the time spent by a packet in the path-server’s

queue (which does not include 𝑅𝑚 , the propagation delay). The

vertical gap represents 𝑄 (𝑡). The vertical gap between the service

curve and upper black curve equals 𝑇 (𝑡) and represents the largest

burst possible at this time.

Wastage is disallowed when 𝑇 (𝑡) ≤ 𝑄 (𝑡). Substituting 𝑇,𝑄 , and
rearranging, we get 𝐶𝑡 −𝑊 (𝑡) ≤ 𝐴(𝑡) − 𝐿(𝑡). Hence, wastage is
possible only when the arrival curve is less than the upper black

curve (see Figure 3(B)). When wastage happens, the slope of the

black curve is smaller than𝐶 , indicated by dotted lines in the figure.

Figure 3(C) shows we can define a loss threshold curve, which is the

upper black curve plus 𝛽 . The arrival curve must remain below this

line, and loss is allowed only when the arrival curve touches this

line. The sender detects losses when it receives dupacks number

of acknowledgments of packets after the loss event. Figure 3(D)
shows how a CCA that simply maintains a constant cwnd controls

𝐴(𝑡) in response to 𝑆 (𝑡). Here, 𝐴(𝑡) = 𝑆 (𝑡 − 𝑅𝑚) + cwnd because

the ACKs leaving the server will reach the sender 𝑅𝑚 seconds later,

which maintains cwnd packets in flight.

4.2 The Set of Paths CCAC Captures
The behavior of a real network path can be decomposed into a series

of “boxes”. Individual boxes represent various phenomena such as

bottleneck links and ACK aggregation. In some cases, it helps to

decompose one physical device as multiple boxes. For instance,

the sender’s network stack can be broken into a component that

packetizes and another that paces packets with timing errors.

Individual “boxes”. Now we discuss which real network boxes

the path-server can emulate. Since it is a generalized TBF, it can

naturally implement a regular TBF as shown in Figure 4. If the TBF

has a link rate of 𝐶 and a burst size of 𝐾 , then we can emulate it

with a path-server with the same link rate and 𝐷 = 𝐾/𝐶 . When the

sender stops sending, tokens accumulate, allowing the path-server

to burst when the sender bursts (i.e., the arrival curve has a large

single-step increase). The path-server can burst a maximum of𝐶 ·𝐷
bytes, buffering the rest. Then, the TBF sends data from its buffer

at a rate of 𝐶 .

The path-server can also emulate a constant-bit rate (CBR) link

with rate 𝐶 followed by an arbitrary delay box (see Theorem 3

in Appendix D). The delay box can non-deterministically delay

every byte by an arbitrary amount as long as it does not reorder

bytes and no byte stays in the delay box for longer than 𝐷 seconds.

Thus, the CBR + delay box can emulate a wide range of phenomena

such as packetization, ACK aggregation, scheduling errors, MAC-

layer jitter, and arbitrary delays (≤ 𝐷). The second example in

Figure 4 shows the behavior of an ACK aggregator. Regardless of

the sending rate of the arrival curve, the service curve aggregates

packets (which is the effect of ACK aggregation) and sends them in

bursts. Note that the CBR + delay box cannot emulate token bucket

filters, while the path-server can.

Composition. If network boxes 𝜏1 and 𝜏2 can be emulated by

path-servers with infinite buffers (𝛽 = ∞) and parameters (𝐶1, 𝐷1)
and (𝐶2, 𝐷2), then the composition of 𝜏1 and 𝜏2 can be emulated by a

path-server with parameters (min(𝐶1,𝐶2), 𝐷1+𝐷2) (see Theorem 7

in Appendix D), where𝐶, 𝐷, 𝛽 are the link rate, jitter parameter, and

Burst size = CD

Token bucket filter Ack aggregation

Time Time

C
um

ul
at

iv
e

by
te

s

Figure 4: Examples of how the path-server emulates a token
bucket filter and ACK aggregation.

buffer size, respectively.When buffers are finite, our result is weaker:

if𝐶1 ≤ 𝐶2 and 𝛽2 ≥ 𝐶1𝐷1, then their composition can be emulated

by a path-server with parameters (min(𝐶1,𝐶2), 𝐷1 + 𝐷2, 𝛽1) (see
Theorem 5 Appendix D). We do not yet have results for when

𝐶1 > 𝐶2 and buffers are finite.

Design decisions. The weakening of results with the constraint
𝛽2 ≥ 𝐶1𝐷1 is by design. If the path-server is able to emulate a bursty

box followed by one with a small buffer, it can emulate a network

that drops packets no matter what the CCA does. This is because,

even if the CCA sent evenly spaced packets, the bursty box can

generate bursts of up to 𝐶𝐷 bytes larger than the buffer size of

the small-buffered box, leading to packet drops that a CCA cannot

avoid. While such paths are possible on the Internet, it is not useful

to include them in the model because no CCA can help here. Thus,

Theorem 5 considers only the case when the buffer size of 𝜏2 is

big enough to absorb bursts created by 𝜏1 (𝛽2 ≥ 𝐶1𝐷1). Indeed,

we prove that when 𝐶1 ≤ 𝐶2 and 𝛽2 ≥ 𝐶1𝐷1, the second box can

never lose packets (see Theorem 4 in Appendix D). Operationally,

we achieved this by defining the condition for loss on 𝑄 (𝑡) −𝑇 (𝑡)
and not on 𝑄 (𝑡), even though the latter might seem more natural

(and is what we used in earlier iterations of our model).

Another design decision was to limit the time a token can spend

in the queue to 𝐷 seconds. It may seem more natural to limit the

number of tokens in the queue to 𝐾 = 𝐶𝐷 ≈ 𝐵𝐷𝑃 bytes instead

(again, this is what we used in earlier iterations of the model). Here,

there is nothing forcing the path-server to use tokens. If the sender

sends fewer than 𝐾 bytes (say, because its initial cwnd < 𝐾), the

server can hold on to the packets indefinitely, causing the sender

to timeout. Requiring the initial window to be equal to the BDP is

unreasonable, since determining the BDP is precisely the CCA’s job!

Exclude this behavior by using 𝐷 instead of 𝐾 is a clean resolution.

4.3 Expressing CCAs
A CCA controls the sender’s transmission rate based on observed

network behavior. In CCAC, a CCA determines the cumulative

arrivals, 𝐴(𝑡), by determining the congestion window, cwnd (𝑡),
and pacing rate, 𝑟 (𝑡). At time 𝑡 , the CCA can observe the service

curve up to time 𝑡 − 𝑅𝑚 , since feedback is delayed by 𝑅𝑚 . The

CCA can also observe 𝜏𝑜 (𝑡) and 𝐿𝑑 (𝑡), which are functions built

into CCAC. 𝜏𝑜 (𝑡) indicates whether a timeout happened at time 𝑡 .

𝐿𝑑 (𝑡) captures the cumulative number of losses detected. Losses are

detected through duplicate ACKs and timeouts. As a convenience,

the logic to calculate queuing delay based on 𝐴 and 𝑆 is also built

into CCAC. The user needs to write constraints that determine𝐴(𝑡)
as a function of the observables. Figure 1 shows how to implement

AIMD in CCAC.

5

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA V. Arun et al.

Timeouts. If we implement timeouts according to RFC 6289 [40],

the path-server can cause timeouts by simply emulating a smooth

network in the beginning to keep rttvar (variation in RTT) low.

Then, it can suddenly increase delay by 𝐷 seconds to cause a time-

out. While this scenario is possible in real networks, CCAC would

produce excessively antagonistic worst-case behavior in this case.

Instead, we trigger a timeout only when all in-flight packets have

been lost. The sender would certainly timeout when this happens,

and this mechanism avoids antagonistic timeouts.

4.4 Discussion
Variable link rates. CCAC uses two approaches to capture vari-

able link rates. The jitter allowance, 𝐷 , captures short-term varia-

tions. Long-term variations, like changes in the rate of a wireless

channel, require 𝐶 to be variable. However, 𝐶 is constant in the

CCAC model. To model a variable 𝐶 , the user uses CCAC to prove

lemmas about a CCA’s behavior over a fixed link rate for a longer

timescale 𝑇 ′. Then, the user can use mathematical induction on

these lemmas to manually prove that as the fixed rate changes, the

CCA will move toward a correct set of of cwnd and rate values

for that link rate. The user can pick 𝑇 ′ to be the smallest (CCA-

dependent) value such that the lemmas hold. Sections 7 and 8 show

examples of this approach for AIMD and Copa.

Had we allowed the path-server to vary 𝐶 with time, the path-

server would have been able to emulate any network (i.e., it can

pick any 𝑆 (𝑡) ≤ 𝐴(𝑡)). No CCA can function on a network where

the capacity can vary arbitrarily, rendering CCAC useless since no

interesting theorems about the CCA can then be proved with it

(since they will not be true).

Choice of 𝐷 . The path-server can capture jitter up to 𝐷 seconds.

There are two ways of setting 𝐷 . First, if we know the path, we

can calculate what 𝐷 would be sufficient to model the individual

components. Then, our composition theorems state that the net 𝐷

is the sum of the𝐷s on the path. Alternately, we believe setting𝐷 to

be one RTT is appropriate for congestion control because that is the

timescale at which end-to-end CCAs can react to changes in the net-

work. CCAs must hedge against fluctuations in the rate at smaller

timescales. For longer timescales, they can simply adapt their rate

to follow the network. Note that for any two path-servers with the

same link rate and buffer size, with jitter parameters 𝐷1 > 𝐷2, the

first path-server can emulate a superset of the paths emulated by

the second path-server.

Non-congestive loss. 𝐿(𝑡) captures loss due to congestion. It

is straightforward to model non-congestive loss as well by defining

another function 𝐿nc (𝑡) that is constrained as 0 ≤ 𝐿nc (𝑡) ≤ 𝜂 ·
(𝐴(𝑡) − 𝐿(𝑡)), where 𝜂 is the maximum non-congestive loss rate.

5 FORMAL ANALYSIS USING SMT SOLVERS
In this section, we show how CCAC uses SMT solvers. An SMT

formula is a first-order logic formula over predicates. In CCAC, we

only use predicates that are Boolean variables or linear arithmetic

inequalities, as they are more efficient for automated analysis. Each

linear predicate takes the form

∑
𝑖 𝑏𝑖𝑣𝑖 ≥ 𝑐 where 𝑏𝑖 and 𝑐 are real

or integer constants and 𝑣𝑖 are the real variables on the formula.
4

4
Linear equations with real variables are easier for an SMT solver to handle than

integer variables because they use linear programming as a subroutine. We use real

Lower bound on
queuing delay

Upper bound on
queuing delay

t
t1

t2

(A) (B)

Figure 5: (A) While the bounds on 𝑆 (𝑡) in the continuous
model look like the dotted lines, we over-approximate that
region using the solid lines as bounds. (B) In the discrete
model, the queuing delay at time 𝑡 can be any value between
the upper and lower bounds.

An SMT solver attempts to find a satisfying assignment to the

variables of the formula. If no such assignment exists, it outputs

“unsat” (for unsatisfiable). CCAC uses the Z3 SMT solver [16] to

search through the space of all possible network traces generated

from the interactions between the path model and the CCA. In this

section, we describe the key ideas needed to express the path model

in SMT constraints.

5.1 SMT Formulation
Representation. Our model for the network and CCAs include

several functions over continuous time (i.e., functions of the form

𝑓 (𝑡) where 𝑡 is a real number, like the service and loss curves). To

encode those functions in SMT constraints, we could use a single

variable𝑈𝑓 to represent a function 𝑓 .𝑈𝑓 would be an uninterpreted
function with a single real input and a single real output. However,

using a mixture of uninterpreted functions and linear arithmetic

constraints proved to be intractable for our purposes. Thus, we rep-

resent those functions as a sequence of real variables. For example,

we express the service curve, 𝑆 , as 𝑆0, . . . , 𝑆𝑇 , denoting 𝑆’s values

at times 𝑡 ∈ {0, · · · ,𝑇 }.5 Constraints can also be discretized. For

instance, to express ∀𝑡,𝑄 (𝑡) ≥ 0, we add 𝑄0 ≥ 0 ∧ · · · ∧𝑄𝑇 ≥ 0 to

the formula.
6

For computational efficiency,𝑇 must be small, leading to a coarse

discretization with only 1 to 3 time steps per 𝑅𝑚 .
7
Thus, the dis-

cretized constraints and functions can become a poor approxima-

tion to the continuous ones. To nevertheless get meaningful results,

we adopt the following strategy.

Superset property.When formulating the constraints over dis-

crete time, we ensure that they allow a superset of behaviors pos-

sible with the original constraints, so that any network trace that

conforms to the continuous model is reproducible in the discrete

SMT formulation. Hence, any bounds proved in the discrete model

will be true in the continuous model as well.

Writing constraints that respect the superset property is often

simple. In many cases, since the discrete model only constrains

functions at discrete time steps (i.e., 𝑡 = 0, 1, ..,𝑇), it admits more be-

haviors than the continuous model. For example, 𝑆 (𝑡) is constrained

variables everywhere, except for representing the state in BBR’s state machine as an

integer.

5
We index to𝑇 rather than𝑇 − 1 since that includes𝑇 time steps.

6
For the rest of the paper, we use 𝑋 (𝑡) to represent functions over continuous time

and 𝑋𝑡 for the SMT discretization.

7
Congestion control has a natural time scale of 1 RTT since that is the feedback delay.

6

Toward Formally Verifying Congestion Control Behavior SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

with 𝐶𝑡 −𝑊 (𝑡) as upper bound and 𝐶 (𝑡 − 𝐷) −𝑊 (𝑡 − 𝐷) as lower
bound, shown as dotted lines in Figure 5(A). When discretized, the

bounds on 𝑆 become step functions that contain their continuous

counterpart.

Sometimes ensuring the superset property is more complicated.

One example is computing the queuing delay used by the CCA. Re-

call that delay(𝑡) can be defined as the horizontal distance between

𝑆 and𝐴−𝐿 at 𝑆 (𝑡). However, in the SMT formulation, 𝑆 ,𝐴, and 𝐿 are

only defined at discrete time steps. Thus, as shown in Figure 5(B), a

horizontal line drawn from 𝑆 (𝑡) (red dot) can cross𝐴−𝐿 anywhere

between 𝑡1 and 𝑡2 (the blue dots). As such, the SMT formulation

allows delay𝑡 , the discrete counterpart of delay at time 𝑡 , to take any

value between 𝑡−𝑡1 and 𝑡−𝑡2. To express this in SMT constraints for

each Δ𝑡 ∈ {0, · · · , 𝑡}, we add the constraints 𝑆𝑡 > 𝐴𝑡−Δ𝑡 −𝐿𝑡−Δ𝑡 →
delay𝑡 ≤ Δ𝑡 and 𝑆𝑡 ≤ 𝐴𝑡−Δ𝑡 − 𝐿𝑡−Δ𝑡 → delay𝑡 ≥ Δ𝑡 .8 Appendix C

discusses how we constrain 𝐿𝑑𝑡 to maintain the superset property.

Due to the superset property, a trace that satisfies the discrete

SMT formulation may not necessarily exist in the continuous model.

As such, a bound proved using CCAC may be looser than necessary,

or a corner case caught by CCAC may not be reproducible in the

original model. The saving grace is that a human can always look

at the trace generated by CCAC to ensure that it makes sense, as we

have done in our case studies. In our experience, traces generated

by CCAC always had a correspondence with real networks, even if

it occasionally exploited the relaxation due to discretization.

Initial state. Unless specified by the user, we leave the initial

state unconstrained. In particular, when CCAC explores the space

of all possible network traces, it has full freedom to pick any initial

values for variables like the queue size, wastage, and the number

of lost packets. We will show in our case studies how to use this

feature to prove properties over an infinite time horizon.

CCAs. Recall from Section 4 that each CCA can introduce its

own set of variables and constraints to set cwnd (𝑡) and/or 𝑟 (𝑡).
In our SMT formulation, we have variables cwnd0, . . . , cwnd𝑇 and

𝑟0, . . . , 𝑟𝑇 as discretized versions of 𝑐𝑤𝑛𝑑 (𝑡) and 𝑟 (𝑡), respectively.
The user must discretize other CCA-specific variables and con-

straints and express the CCA as first-order-logic formulae. Specif-

ically, for a CCA that uses a congestion window, we include con-

straints of the form cwnd𝑡 = 𝑓 (¯cwnd, 𝑄, 𝐸), where ¯cwnd is the

vector of all previous window values, 𝑄 is the vector of all state

variables maintained by the algorithm, and 𝐸 is the vector of all the

information derived from the network such as loss and delay. While

Z3 supports nonlinear constraints, we manage to avoid them, im-

proving efficiency. For example, a common technique is to express

a nonlinear function using linear constraints via a lookup table. For

instance, we used it in Copa to multiply queuing delay and cwnd.

5.2 Asking Queries about CCAs
Queries (hypotheses) about CCAs in CCAC must be expressed as

first-order-logic formulae. For instance, to ask whether the network

utilization can drop below a threshold 𝑢, we can add the formula

𝑆𝑇−1 − 𝑆0 < 𝑢𝑇 to our SMT formulation and ask CCAC whether

or not it is satisfiable. If it is, the solver will output an assignment

to all the variables (i.e., 𝑆𝑡 , 𝐴𝑡 , 𝐿𝑡 , and𝑊𝑡) along with the CCA’s

variable that will cause the utilization to drop below 𝑢. If there is no

8
We omit handling the corner case when 𝑆𝑡 = 𝐴𝑡−Δ𝑡 − 𝐿𝑡−Δ𝑡 for clarity.

such assignment, CCAC will have proved that the CCA will always

achieve utilization of at least 𝑢 over a period of 𝑇 time steps.

By default, CCAC is designed to be free to choose many parame-

ters. For instance, it can pick a network with a BDP that is small

relative to the MTU (𝛼). This may not be interesting to the user, so

they can add an additional constraint such as 𝛼 ≤ 1

5
𝐶𝑅𝑚 . Hence,

CCAC allows the user to explore many counterexamples depending

on their interest. As another example, we do not need CCAC to tell

us that AIMD reduces cwnd in response to non-congestive loss, as

this is well-understood. Hence, we simply disabled non-congestive

loss to focus on loss caused by buffer overflow. For the queries we

asked in this paper, this leads to more interesting and unexpected

counterexamples.

5.3 Parameters and Linearity
The model has parameters like the link rate,𝐶 , and the propagation

delay, 𝑅𝑚 . In addition, each CCA may introduce its own param-

eters. We would like to prove properties for any choice of these

parameters. Ideally, we would leave all of them as variables that are

picked by the solver. However, that is not always possible and, for

some parameters, we must resort to other techniques. To better un-

derstand how to pick parameter values, we will start by explaining

parameter units.

There are two units in our framework: time and bytes. Without

loss of generality, we can pick them such that 𝐶 = 1 and 𝑅𝑚 = 1.

Hence, our formulation quantifies over all 𝐶 and 𝑅𝑚 “for free”.

Having 𝐶 be a constant helps because many constraints involve

a product of 𝐶 with a variable. If 𝐶 were a variable, picked by the

solver, multiplication with𝐶 would make the constraint non-linear.

The same benefit holds for 𝑅𝑚 . In addition, some model constraints

relate values of functions across time steps that are 𝑅𝑚 or 𝐷 apart.

For instance, the sender can use 𝑆𝑡−𝑅𝑚 as the number of ACKs

received so far to set cwnd at time 𝑡 . Thus, both 𝑅𝑚 and 𝐷 need to

be integers. 𝑅𝑚 is a small integer that controls the number of time

steps per RTT. As such, it controls the granularity of discretization.

The user needs to pick 𝐷 and in so doing they can sweep over

different values of 𝐷/𝑅𝑚 . 𝐷/𝑅𝑚 is the value of 𝐷 measured in units

of propagation delay.

Parameters that do not appear in a product with another variable

can be left as variables whose value will be picked by the SMT solver.

Examples of such parameters are the buffer size, 𝛽 , and the additive

increase constant, 𝛼 , in algorithms like AIMD and Copa. Note that

when the solver picks 𝛼 , it is implicitly picking the number of

packets in a BDP, 𝐶𝑅𝑚/𝛼 .

5.4 Evaluation via Case Studies
We demonstrate the power of CCAC through three case studies in

the next three sections: BBR [14], AIMD [15], and Copa [5]. CCAC’s

model of these algorithms is simplified and does not correspond

exactly to code. That said, we make three observations. First, CCAC

resembles some implementations of CCAs that also react only a

small number of times per RTT due to CPU limitations. These have

been empirically demonstrated to have similar behavior [37]. This

is because the fundamental timescale of operation for a CCA is one

RTT. Second, CCAC captures complexities such as duplicate ACKs

and timeouts. Third, congestion control is far from being a solved

problem and CCAs are not yet fully understood at an abstract level.

7

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA V. Arun et al.

Slope ≪C

BBR pulses

Time

C
um

ul
at

iv
e

by
te

s A(t) S(t)

Figure 6: Network behavior generated by CCAC that pre-
vents BBR from discovering bandwidth.

Thus, CCAC is still able to uncover surprising behaviors. Further,

for simplicity, our analyses of BBR and Copa assume that the sender

has a correct estimate of 𝑅𝑚 .

In each case, we formulate queries that probe the studied algo-

rithm for “bad behavior”. CCAC produces counterexamples that

allow us to discover unexpected behavior in all three algorithms

that significantly impair their performance. We also use CCAC to

prove bounds on the worst-case performance of AIMD and Copa.

6 CASE STUDY 1: BBR
BBR [14] is a complicated rate-based algorithm that relies on a

number of “if” conditions. However, the core idea of BBR is simple;

the sender calculates the BDP as the current rate multiplied by the

minimum RTT, i.e., as the (total number of bytes ACKed in the last

RTT) * (min RTT) / (RTT). The sender sets its BDP estimate to the

maximum value calculated over the last 10 RTTs. BBR sets its cwnd
to twice this estimate and its pacing rate to (BDP estimate) / RTT. It

has an 8-RTT cycle. In the first RTT of the cycle, it attempts to probe

available bandwidth in the network through “pulsing”. Thus, it

increases the pacing to a value larger than the value calculated using

the above formula. In the second RTT, it significantly decreases the

pacing rate to clear the queue generated in the previous RTT. Then,

it maintains the calculated rate for the remaining 6 RTTs.

We implement this core idea in CCAC, encoding it in SMT con-

straints. Then, we ask queries of the form “Can BBR achieve less

than 𝑥% utilization?”, for different values of 𝑥 . To do so, we add

the constraint 𝑆𝑇 − 𝑆0 ≤ 𝑥𝐶𝑇 , which instructs the solver to find

instances where the total number of bytes served, (𝑆𝑇 − 𝑆0), is a

fraction, 𝑥 , of the maximum, 𝐶𝑇 . We also add periodic boundary

conditions to ensure that the trace output can be repeated. In the

absence of these, the solver can produce a trace where BBR gets low

utilization because its initial cwnd is low and does not ramp up in 20

RTTs; we are looking for low utilization in steady-state. Concretely,
we add 𝑄0 = 𝑄𝑇 ∧ 𝐿0 − 𝐿𝑑

0
= 𝐿𝑇 − 𝐿𝑑𝑇 ∧𝑄0 −𝑇0 = 𝑄𝑇 −𝑇𝑇 to the

constraints. While the execution time depends on the query, queries

up to 20 time steps finish within a few minutes on a standard laptop.

CCAC generates examples of poor utilization, even for arbitrarily

small values of 𝑥 . Our next step is to analyze these low-utilization

examples. Figure 6 shows a schematic of the examples produced.

When BBR increases the pacing rate to probe for network band-

width, the pulse is small (i.e., the increase in pacing rate is small),

and the network does not serve it at a higher bandwidth. Hence,

BBR’s probe fails (i.e., the BDP estimate remains small).

BBR’s design incorporates a feature that we think helps it avoid

this behavior in many networks; BBR’s BDP estimate is the maxi-
mum calculated over the last 10 RTTs. Thus, it usually over-estimates

C
um

ul
at

iv
e

by
te

s

Time

Rm

X Loss!

Loss threshold

> β

β

A B C

Figure 7: An example where ACK aggregation causes loss
even when the congestion window is small.
the quantity because most networks have some delay jitter. This

overestimation implies BBR will cause queue build-ups on jittery

paths. This finding is consistent with empirical observations that

BBR often maintains 1 RTT of queuing in practice [42, 47]. However,

if the network is clean with a smooth service, the problem CCAC

identifies can manifest itself.

One approach to solve this problem is to intentionally overesti-
mate the pacing rate. For instance, the sender can pace BBR flows

at twice the prescribed rate. In fact, recently, Facebook made this

change to their BBR implementation in mvfst [27], the version of

QUIC [28] they use in production. We implemented that version

of the algorithm in CCAC. We found that CCAC no longer finds

any cases where the algorithm gets <100% utilization in the steady

state when the buffer is infinite.
9
We believe that intentionally over-

estimating the pacing rate can increase delay on average, while the

worst-case delay remains the same as before.

7 CASE STUDY 2: AIMD
In this section, we first describe the surprising AIMD behavior we

discovered using CCAC. Then, we show how we can prove bounds

on AIMD’s behavior that are valid over an infinite time horizon.

Our implementation of AIMD is ACK-clocked and unpaced. The

algorithm sends packets when 𝐿𝑑 , 𝑆 , or cwnd increase. It seeks to

maintain cwnd bytes in flight. A packet is “in flight” when it has

neither been ACKed nor marked as lost: inflight = 𝐴(𝑡) − 𝐿𝑑 (𝑡) −
𝑆 (𝑡 − 𝑅𝑚). When inflight drops below cwnd, the sender sends a

packet. Our AIMD implementation handles duplicate ACKs and

timeouts (§5.4). It increases its cwnd only when it gets enough ACKs
and does not react more than once to the same loss event. Due to

the discretization of time in CCAC, however, AIMD reacts only

once per time step. The query is of the form shown in Figure 1.

7.1 The Surprise
We study how jitter can cause AIMD to incorrectly reduce its cwnd
due to buffer overflow even when the buffer is large. Thus, our

query (Figure 1) aims to find scenarios where AIMD can observe

packet loss when cwnd is small. Specifically, we add the follow-

ing constraint:

∨
𝑡 (𝐿𝑡 > 𝐿𝑡−1 ∧ 𝑐𝑤𝑛𝑑𝑡 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ) (in Figure 1,

𝑙𝑜𝑠𝑠_ℎ𝑎𝑝𝑝𝑒𝑛𝑒𝑑 is simply 𝐿𝑡 > 𝐿𝑡−1). CCAC uncovered two ways in

which this situation can occur. We discuss these in turn.

Loss due to ACK bursts. We start with a well-understood

behavior that CCAC uncovered. Consider an unpaced and ACK-

clocked CCA. If ACKs arrive in a burst, the CCA will send packets

9
Note that this is not a formal proof that the modified version will always have high

utilization. We show how these proofs can be constructed for AIMD and Copa in the

next two sections, leaving the formal proof of BBR’s properties to future work.

8

Toward Formally Verifying Congestion Control Behavior SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

A full buffer
(β = 2CRm)

Packet is
dropped

...

2CRm evenly
spaced packets

By the time this is acked, both
cwnd and inflight are 2CRm. Hence

the sender is ready to burst

...

Burst of CRm
packets are

dropped Time

Figure 8: At the end of this sequence of packets, 1) the sender
has reduced its cwnd from 4𝐶𝑅𝑚 to 2𝐶𝑅𝑚 due to loss, 2) the
server has dropped 𝐶𝑅𝑚 packets 3) inflight = cwnd = 2𝐶𝑅𝑚
making the sender ready for another burst. Packets go from
left to right.

in a burst. A burst of ACKs can cause the algorithm to send a burst

of packets, overwhelming the buffer and causing packet drops.

CCAC generated an example of this behavior, shown in Figure 7.

Suppose 𝐷 = 𝑅𝑚 and cwnd = 𝛽 = 𝐶𝑅𝑚 . For ease of understanding,

assume that cwnd is roughly constant, say because it is large com-

pared to the additive constant. Initially, the path-server maintains

zero queue and hence the sender sends at a rate cwnd/𝑅𝑚 = 𝐶 . At

time A in the figure, the path-server decides to stop transmitting

to emulate an ACK aggregator that withholds ACKs, only to send

them in a burst later at time B. The ACK aggregator can pause

packets for at most 𝐷 seconds. When it sends a burst at time B, the

ACKs reach the sender 𝑅𝑚 time steps later, at time C. These ACKs

causes the sender to send a large burst of size𝐶𝐷 = 𝐶𝑅𝑚 = 𝛽 bytes,

overwhelming the buffer and causing packet loss. Note that this can

happen even when cwnd < 𝐶 ·𝑅+𝛽 , which is the threshold at which
fluid models predict loss will happen. In general, this phenomenon

can cause packet drops when cwnd > 𝛽 and 𝛽 < 𝐶𝐷 .

Loss due to loss-bursts. We now discuss a finding that took

us by surprise, again with an unpaced and ACK-clocked AIMD

CCA. CCAC found that a burst can also happen if 𝐿𝑑 (𝑡) increases
suddenly (recall that inflight = 𝐴(𝑡) − 𝐿𝑑 (𝑡) − 𝑆 (𝑡 − 𝑅𝑚)). But this
discovery is surprising because cwnd is halved when losses are

detected! Thus, we would expect cwnd − inflight to not increase.

CCAC found that this safeguard can fail, by finding a situation

where losses occur in two steps. The first loss halves cwnd. Then,
packets are ACKed until inflight = cwnd. Now, the sender detects a
burst of losses and does not halve its cwnd again because it is part

of the same loss event [22] (cwnd decreases only if the packet that

was lost was sent after the last cwnd decrease).

A concrete example of this behavior arises when 𝐷 = 𝑅𝑚 and

𝛽 = 2𝐶𝑅𝑚 (we use CCAC to prove bounds for other values of 𝛽

and 𝐷 later). First, the path-server inflates the propagation delay

to 𝑅𝑚 +𝐷 . This allows cwnd to increase to𝐶 (𝑅𝑚 +𝐷) + 𝛽 = 4𝐶𝑅𝑚
without loss. When the cwnd exceeds this quantity, one packet gets

dropped and the sender reduces its cwnd to 2𝐶𝑅𝑚 , while still having

4𝐶𝑅𝑚 packets in flight. After the loss, the path-server services the

next 2𝐶𝑅𝑚 packets evenly. However, the sender does not transmit

any packets in response because the number of packets in flight is

still larger than cwnd. At the end of this process, inflight = cwnd.

Now, the path-server does not service any packets for the next

𝑅𝑚 time steps. Then, it drops𝐶𝑅𝑚 packets and services the remain-

ing𝐶𝑅𝑚 packets in a burst. Thus, rather than receiving 2𝐶𝑅𝑚 ACKs,

the sender receives only 𝐶𝑅𝑚 ACKs, indicating that an additional

𝐶𝑅𝑚 packets were lost. However, this burst in loss does not trigger

another cwnd decrease since the sender recently decreased cwnd.
Now, 𝐿𝑑 (𝑡) increases by𝐶𝑅𝑚 and 𝑆 (𝑡 −𝑅𝑚) also increases by𝐶𝑅𝑚
because of the last burst. This empties the in-flight packets and

causes the sender to burst𝐶𝑅𝑚 +𝐶𝑅𝑚 = 2𝐶𝑅𝑚 packets at once. The

combined burst is twice as large as what the path-server can burst

at once. This burst is enough to overwhelm the buffer again (recall,

𝛽 = 2𝐶𝑅𝑚), causing another packet drop. This drop occurs for a

packet that was sent when cwnd was already 2𝐶𝑅𝑚 . Hence, the

sender will reduce its cwnd again to 𝐶𝑅𝑚 . We discuss this example

in more detail in Appendix A.

Figure 8 depicts the above discussion. It shows the spacing (in

time) between packets that arrive at the server just as its buffer is

about to exceed capacity for the first time (when cwnd = 4𝐶𝑅𝑚).

The packets are spaced this way because the path-server sent ACKs

in that pattern 𝑅𝑚 time steps earlier. Note that when the path-

server services a packet, the effect is seen 𝑅𝑚 time steps later in

the sender’s packet transmissions.

An important question to consider here is: If the minimum cwnd
in this scenario is 𝐶𝑅𝑚 , doesn’t the sender always achieve full

utilization? No, because jitter in delay can inflate the RTT. Hence,

when cwnd = 𝐶𝑅𝑚 , utilization can be as low as cwnd/(𝑅𝑚 + 𝐷),
which is just 50% of𝐶 in this example. This phenomenon can happen

repeatedly, causing consistently low utilization.

Mitigation 1: limit transmissions per ACK. At first glance,
RFC6582 [22] handles this case. It says “the implementation is

encouraged to take measures to avoid a possible burst of data, in

case the amount of data outstanding in the network is much less

than the new congestion window allows. A simple mechanism is to

limit the number of data packets that can be sent in response to a

single acknowledgment.” Note, however, that our burst due to loss

is followed by a burst of actual ACKs. Thus, the problem occurs

despite this mitigation.

Mitigation 2: Pacing. Premature losses can occur when pacing

is implemented with slack. For instance, the Linux kernel used a

pacing of 2cwnd/smoothed_rtt. The factor of 2 does not prevent

premature losses, because bursts can still occur. Recently, Google

produced a patch reducing it to 1.2 because they noticed a perfor-

mance improvement [38], which perhaps happened for the reasons

discussed above. We used CCAC to confirm that losses can indeed

occur when cwnd < 𝐶𝑅𝑚 + 𝛽 when the sender is paced in this way.

The example above was when 𝛽 = 2𝐶𝑅𝑚 . Naturally, beyond a

certain buffer size the network cannot orchestrate a burst large

enough to overwhelm the buffer prematurely (when cwnd = 𝛽 <

𝐶𝑅𝑚 + 𝛽). However, it is difficult for even experienced engineers

to determine this threshold, especially when multiple phenomena

interact. In the next subsection, we show how CCAC can help us

discover and prove this threshold (Theorem 2).

7.2 AIMD’s Steady-State Analysis
CCAC only searches through traces that are a finite number of

time steps long. Nevertheless, we can stitch together statements

proved over finite time to prove theorems about arbitrarily large

9

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA V. Arun et al.

Cwnd
Q

ue
ue

 le
ng

th
4C

R
m

+2
α/
𝛿

CRm-α/𝛿 4CRm+2α/𝛿

A S

C
B

Cwnd

U
nd

et
ec

te
d

lo
ss

es

C(Rm+D) + 𝛽

C
(R

m
+D

) +
 𝛼

S

A

B

AIMD Copa
C

Figure 9: State diagram we use to prove AIMD and Copa’s
steady-state behavior.
time horizons. We focus on “steady state behavior” and exclude

transients that occur when network parameters such as the link

rate or propagation delay change. To do so, we first leave the initial

conditions unconstrained; if the network parameters were different

before 𝑡 = 0, they could leave the network in any state and we

continue our analysis from there. Then, we assume 𝐶 and 𝑅𝑚 are

constant and prove that the CCA moves toward the steady state.

A steady state for a given CCA is a set of network states such

that as long as the network parameters remain unchanged (1) if

the network enters it, it will never leave it and (2) it will always

enter the steady state, regardless of initial conditions. In our case

studies, a steady state is defined by bounds on cwnd, queue length,
and number of undetected losses. The steady state for a CCA may

not be unique and only needs to be as “tight” as needed by the

theorems we wish to prove about them. Note that our approach to

steady-state analysis allows us to reason about variable link rates

as well, since we prove that the cwnd always moves in the “right”

direction. Hence, as the link rate varies, the cwnd will always track

it.

The user’s intuition and experience are essential to arrive at the

steady state. They can pose different queries to CCAC to validate

their guesses. For AIMD, we guess that the steady state is defined by

an upper bound on cwnd and the maximum number of undetected

losses, 𝐿𝑡 − 𝐿𝑑𝑡 . We guess 𝑚𝑎𝑥_𝑐𝑤𝑛𝑑 = 𝐶 (𝑅𝑚 + 𝐷) + 𝛽 + 𝛼 and

𝑚𝑎𝑥_𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 = 𝐶 (𝑅𝑚 + 𝐷) + 𝛼 . With these guesses, we prove

the following theorem:

Theorem 1. For AIMD, if𝐶𝑅𝑚 > 5𝛼 ,10 the steady state is defined
by cwnd < 𝐶 (𝑅𝑚 +𝐷) + 𝛽 and 𝐿(𝑡) −𝐿𝑑 (𝑡) < 𝐶 (𝑅𝑚 +𝐷) +𝛼 . Under
the CCAC path model, AIMD will eventually enter this steady state
from any initial state. Further, once entered, AIMD will never leave
the steady state.

To prove this theorem, we divide the state space of AIMD as

shown in Figure 9. Then, we prove the following lemmas, which

show that both cwnd and undetected losses always move in the

right direction (shown with arrows in the figure). The proof uses

these lemmas:

(1) If cwnd0 > 𝑚𝑎𝑥_𝑐𝑤𝑛𝑑∧𝐿0−𝐿𝑑
0
≤ 𝑚𝑎𝑥_𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑∧𝐶𝑅𝑚 >

4𝛼 then cwnd𝑇 < cwnd0 − 𝛼
(2) If 𝐿0 − 𝐿𝑑

0
> 𝑚𝑎𝑥_𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 ∧𝐶𝑅𝑚 > 5𝛼 then at least one

of the following holds

(a) 𝐿𝑇 − 𝐿𝑑𝑇 ≤ 𝐿0 − 𝐿𝑑
0
−𝐶 (i.e., undetected losses decrease by

at least 𝐶) and cwnd𝑇 ≤ 𝑚𝑎𝑥_𝑐𝑤𝑛𝑑
10
We constrain the BDP to be more than 5𝛼 , because small BDPs elicit a different type

of worst-case behavior which we don’t study for the sake of brevity. The threshold

was determined by repeatedly querying CCAC and it happened be a small integer.

(b) cwnd0 > 𝑚𝑎𝑥_𝑐𝑤𝑛𝑑 ∧ cwnd𝑇 < 𝑐𝑤𝑛𝑑0 − 𝛼
(3) Once AIMD has reached steady state, it will remain there.

That is, if𝐿0−𝐿𝑑
0
≤ 𝑚𝑎𝑥_𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑∧cwnd0 ≤ 𝑚𝑎𝑥_𝑐𝑤𝑛𝑑∧

𝐶𝑅𝑚 > 3𝛼 then

∧
𝑡 𝐿𝑡 − 𝐿𝑑𝑡 ≤ 𝑚𝑎𝑥_𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 ∧ cwnd𝑡 ≤

𝑚𝑎𝑥_𝑐𝑤𝑛𝑑 .

Lemma (2) implies that if the number of undetected packets and

cwnd are both larger than the threshold, then first cwnd will fall

below the threshold. At this point, the number of undetected losses

will fall until it is also below the threshold. Combined with (1) and

(3), the lemmas prove the theorem.

To prove a statement using CCAC, we add its negation as a

constraint and confirm that CCAC returns “unsatisfiable”. Each

proof works for a specific value of 𝛽 (specified in number of BDPs).

We sweep over several values between 0.1 to 4 BDP and prove the

theorem for each. Having established the steady state, we prove

bounds on premature drops. Using insights from experimenting

with CCAC, we formulate the following theorem:

Theorem 2. If 𝛽 <= 𝐶 (𝑅𝑚 + 𝐷), loss can happen if and only
if cwnd ≥ 𝛽 − 𝛼 . For other values of 𝛽 , the condition is cwnd ≥
𝐶 (𝑅𝑚 − 1) + 𝛽 − 𝛼 .

The latter threshold in the theorem agrees with the fluid model

except for the −𝐶 term. This term comes from discretization, be-

cause the discretized path-server can burst𝐶 ·1 bytes more than the

continuous version (see Figure 5(A)). The finer our discretization,

the smaller this difference. Recall from Section 5.3 that units of time

are arbitrary, and the absolute value of 𝑅𝑚 only controls the granu-

larity of discretization. Higher values lead to larger SMT formulae,

requiring CCAC to take longer to solve. The quantity of interest

is actually 𝑅𝑚/𝐷 . Hence, we prove the result for 𝑅 = 2;𝐷 = 1, 2, 3

and 𝑅 = 3;𝐷 = 1, 2, 3 while sweeping over 𝛽 ∈ (0.1, 4𝐶𝑅𝑚] and
conjecture that the theorem is true in general.

8 CASE STUDY 3: COPA
Copa [5] is a delay-based algorithm like Vegas [12] and Fast [48]

with two new ideas. First, while Vegas computes queuing delay as

(RTT - minimum RTT), Copa uses (Standing RTT - minimum RTT).

Standing RTT is the minimum RTT over a short period of time,

typically the last RTT. Copa increases its rate when the estimated

queuing delay is low, and decreases its rate otherwise. Thanks

to the use of Standing RTT, it decreases its rate only when there

is persistent queue buildup. Second, Copa has a mode-switching

algorithm that helps it detect if it is sharing the bottleneck with

cross traffic that uses a buffer-filling CCA (e.g., Cubic). If so, it

switches to a more aggressive mode, similar to AIMD or Cubic, to

compete with such traffic.

8.1 Worst-Case Utilization
Our goal is to understand the value of using Standing RTT and

whether it guarantees high utilization. We implement Copa in

CCAC without mode-switching and ask it a series of queries of

the form “Can Copa achieve less than 𝑥% utilization?”, for differ-

ent values of 𝑥 . This is the same query that we used for BBR and

includes the same periodicity constraint. We find that CCAC gen-

erates examples of poor utilization, even for small values of 𝑥 . This

10

Toward Formally Verifying Congestion Control Behavior SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

section describes how we used CCAC to understand why Copa

might perform poorly.

The intuition behind Copa’s Standing RTT idea is that when

Copa is sending at less than link rate, the queuing delay would be

zero at least once every RTT. Thus, (Standing RTT -min RTT)would

be zero, allowing Copa to increase its cwnd. Since it would not be

prudent to expect a real measurement to be exactly zero, Copa

also increases its rate if it believes the queue is nearly empty; that

is, it has fewer than 1/𝛿 packets, where 𝛿 is a constant parameter

of the algorithm (e.g. Facebook’s implementation of Copa used

𝛿 = 1/25 [23]).

One would expect Copa to always be able to maintain high uti-

lization. However, the counterexample generated by CCAC tells

a different story. Figure 10 shows that Copa maintained a persis-

tent queue of up to 𝐶𝐷 packets, or ≈ 𝐶𝑅𝑚 ≫ 1/𝛿 packets (recall

that the queue length is the horizontal distance between 𝐴(𝑡) and
𝑆 (𝑡)). This caused the sender to decrease cwnd. So why was our

11

understanding incongruous with this counterexample?

When utilization is low, we expect the arrival curve to almost

meet the service curve frequently, representing an emptying of

the queue. However, in Figure 10, the arrival and service curves

don’t come close, meaning that a standing queue is maintained

persistently in the network. This behavior causes Copa to over-

estimate delay despite the Standing RTT mechanism, degrading

throughput. Copa decreases its rate unless the standing queueing

delay it measures is less than 1/(𝛿𝑟), where 𝑟 is its current rate.
Intuitively, in the worst case, the network can maintain a standing

queue of 𝐷 , which means it can fool Copa into reducing its rate

down to a negligible rate of 1/(𝛿𝐷).
We now try to identify a path where such behavior can occur.

We start by trying to identify a single network box that can produce

this behavior. To do so, we change the model to allow waste only

when 𝑄 (𝑡) = 0, while in the original model it is allowed when

𝑇 (𝑡) ≥ 𝑄 (𝑡). The modified model retains its ability to emulate

many network boxes but it no longer composes; it cannot emulate

a cascade of these boxes (see §4.2). When we ran the same query

with this non-composing model, we found that CCAC no longer

generates examples of Copa achieving very low utilization. This

is because, if the CCA is sending packets at a rate lower than the

link rate, the non-composing model will have to waste tokens so

that they don’t expire. Waste is allowed only when 𝑄 (𝑡) = 0. This

forces the path-server to empty the queue, which Copa detects and

increases its rate.

What is the difference between the composing and non-composing

model? How can multiple boxes maintain a standing queue, even

when a single box cannot? The answer is that a standing queue

can arise when the different boxes empty their queues at different

points in time. For example, consider a Wi-Fi device,𝑊 , that has

to share the medium with other devices. When𝑊 gains medium

access, it sends at a high instantaneous rate, while on average it has

a lower rate of 𝐶 . Suppose𝑊 is followed by another box with little

jitter and comparable or lower average throughput as illustrated by

the dotted line in Figure 10.
12

Here, the first box has arrival curve

𝐴(𝑡) and service curve 𝑆1 (𝑡) and the second one has arrival curve

11
Two of the authors of this paper were the designers of Copa.

12
We added the dotted line by hand; the rest of the figure was generated by CCAC.

0 2 4 6 8
Time (Rₘ)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

by
te

s (
in

 B
DP

)

S₁(t) = A₂(t)
Bounds
S(t)
A(t)

Figure 10: A trace generated by CCAC that causes Copa to
severely underutilize network capacity. Here, 𝐶 = 1𝐵𝐷𝑃/𝑅𝑚
and Copa is severely under-utilizing the link. A network
can have a standing delay when it has more than a single
box, even if the individual boxes do not maintain a standing
queue. 𝑆2 (𝑡) and 𝐴1 (𝑡) denote 𝑆 and 𝐴 of the first and second
boxes respectively.

𝐴2 (𝑡) = 𝑆1 (𝑡)13 and service curve 𝑆 (𝑡). As evident in the figure,

the arrival curve and the service curve never meet after 𝑡 = 0,

producing the behavior seen in the counterexample generated by

CCAC.

As designers of Copa, we had not considered the fact that multi-

ple boxes may be able to create persistently high delays despite a

lack of persistent queues in any individual box, and discovered it

only when working with CCAC. We also found that Copa performs

well not only when the condition for waste is 𝑄 (𝑡) = 0, but also if

it is 𝑄 (𝑡) ≤ 𝛼
2𝛿
, which confirms that Copa’s 𝛿 works as designed.

The same holds for proofs in the next section.

8.2 Copa’s Steady-State Analysis
We analyze Copa’s steady state behavior using a similar approach

to §7.2. Here, we analyze the special case where 𝐷 = 𝑅𝑚 and the

buffer is infinite. We guess that in steady state Copa maintains a

queue length smaller than 4𝐶𝑅 + 2/𝛿 and cwnd between 𝐶𝑅 − 1/𝛿
and 4𝐶𝑅 + 2/𝛿 (see Figure 9). We use CCAC to show that (a) Copa

will eventually enter the set of states S and (b) once entered, it never

leaves S. For instance, to prove A→S in Figure 9, we ask CCAC to

find an example where the initial cwnd and queue length are in A

and at time 𝑇 “bad things” happen (i.e., 𝐴𝑇 − 𝑆𝑇 > 4𝐶𝑅𝑚 + 2𝛼/𝛿 ∨
(cwnd𝑇 < cwnd0 + 𝛼/𝛿 ∧ cwnd𝑇 < 𝐶𝑅𝑚 − 1/𝛿)). If CCAC finds no

such instance, it proves the converse of the above. That is, if Copa

is in A, it moves toward 𝑆 . We similarly prove assertions from B

and C, and finally prove that if Copa starts from state S, it remains

there. This proves that S is Copa’s steady state.14

Utilization. To determine the minimum utilization for Copa,

we first constrain the initial conditions to be within the steady state

and ask CCAC to give examples where 𝑆𝑇 − 𝑆0 < 𝑥𝐶𝑇 . We conduct

a binary search to find that 𝑥 = 0.5 is the minimum value where

CCAC can find an example. This proves that Copa always achieves
at least 50% utilization in steady state.

13
To emulate delay 𝑑 we can set𝐴2 (𝑡) = 𝑆1 (𝑡 − 𝑑) . This does not materially change

the analysis since 𝑑 can be included in 𝑅𝑚 .

14
Copa has some uninteresting corner-cases when 𝛼/𝛿 is large relative to a 𝐶𝑅𝑚

(BDP), so we constrain it to be < 𝐶𝑅𝑚/5 in all analysis.

11

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA V. Arun et al.

But Copa always ensures its cwnd ≥ 𝐶 · 𝑅𝑚 − 1/𝛿 , so why is

the bound only 50%? Why is not nearly 100%, as the fluid model

would predict? The reason is the same as for AIMD. The server

can inflate delay by 𝐷 = 𝑅𝑚 , which slows down ACKs and, hence,

packet transmissions. This happens even though this restricted path

model cannot maintain a large standing queue. Transient queues

are enough to hurt utilization. We confirm that this bound is tight

by asking CCAC to produce an example with 50% utilization with

periodic boundary conditions (i.e., initial queue length, cwnd etc.

are equal to the final values). The periodicity ensures that we can

continue the pattern indefinitely, ensuring that the behavior is not

transient.

Delay. Copa was designed to maintain a maximum queuing

delay of 3𝛼/𝛿 bytes, so why does our analysis show a much higher

value? Examples generated by CCAC show that this is a feature, not

a bug, in Copa. When the network is jittery, Copa will (and should)

increase its cwnd even if the maximum queue length is large, since

it looks at the standing-RTT, not the latest RTT like Vegas does.

Vegas would decrease its cwnd to nearly zero, adversely degrading

its throughput.

Does this mean Copa always maintains a small minimum RTT,

even though the maximummay be large? Unfortunately not. CCAC

found examples with large minimum RTTs as well. This happens

if the network is jittery to begin with, causing Copa to increase

cwnd and then becomes smooth. In the period that Copa reduces

its cwnd, the queue length will be large. Utilization can be <100%

for the same reason; Initially the network is smooth, causing Copa

to maintain a cwnd ≈ 1BDP, but becomes jittery later, causing low

utilization.

9 LIMITATIONS AND FUTURE WORK
We believe that CCAC sets the initial steps towards a more compre-

hensive and formal understanding of the behavior of CCAs, raising

new challenges and opportunities. For example, we have not yet an-

alyzed howmultiple flows compete on the same bottleneck, because

doing so with our approach requires non-linear constraints in the

SMT formulation. Z3 was unable to solve our formulation of these

problems. When we restrict our model to linear arithmetic, Z3 was

always able to answer queries for𝑇 < 20. This is a limitation of the

solver and/or SMT formulation, not the model. Further, CCAC does

not support receiver-driven protocols, MPTCP [51], schemes using

in-network signals such as ECN [21], INT [30], XCP/RCP [20, 29],

and ABC [25]. We discuss a possible way to handle these in Appen-

dix B. The assumptions made by CCAC are listed in Section 3.

We do not have a composition theorem when buffers are finite

and the first box is faster than the second one (§4.2). Due to dis-

cretization, the bounds CCAC produces may not be tight (§5). CCAC

focuses on worst-case analysis; this was a conscious design choice

because average-case analysis requires a probability distribution,

which is often unknown and can miss important tail cases (§3).

Our CCA implementations are simplified (§5.4). Future work can

provide a higher-level interface to writing CCAs, which makes im-

plementing more complex CCAs easier. CCAC does not have an au-

tomated method to map a network trace to actual network elements

that could produce the trace, though in our experience we were

always able to find such elements. There is work in verifying the

implementation of CCAs [10, 43–46] which is complementary with

CCAC’s verification of the algorithm. End-to-end verification of

both the algorithm and its implementation is also interesting future

work. Currently proving statements about infinite time horizons

and variable link rates (see §4.4) is semi-automated, and requires a

manual component as illustrated in our case studies.

10 RELATEDWORK
A long line of work in congestion control has relied on theoretical

models [15, 33, 35, 41]. Our path model is similar to the ones devel-

oped in network calculus [11, 33]. We adopt those ideas to create a

model well-suited to analyzing CCAs. We ensure that our model

is expressive, while avoiding behaviors that no CCA can handle.

Our approach differs from traditional network calculus in a key

aspect; for us 𝐴(𝑡) is a function of 𝑆 (𝑡 − 𝑅𝑚). This closes the loop
between the server and the packet arrivals and allows us to model

CCAs. This complicates analysis and precludes the use of standard

network calculus techniques. To manage the complexity, we use an

SMT solver. Two prior works use network calculus to simulate [31]

and theoretically analyze [6] CCAs. Their goal is to make the anal-

ysis of a simple deterministic network easier. However, CCAC uses

a non-deterministic path model, giving it many degrees of freedom

to expose unexpected CCA behavior.

A related line of work is on formal verification of the imple-
mentation of a CCA given a specification of the algorithm using

manual [10] and automated [43–46] techniques. This line of work

identifies bugs in the implementation of an algorithm but does not

make any statements on the performance of the studied algorithm.

For instance, a verification of the implementation can try all pat-

terns of packet losses to see if an AIMD implementation drops its

window on loss. It does not, however, answer the query of whether

it should drop its window on loss.

Formal verification has been used in recent years in other areas

of computer networking as well [8, 9, 24, 32].

11 CONCLUSION
CCAC is an automated tool with a built-in path model that proves

correctness properties about CCA behavior or discovers counterex-

amples.It introduces a performance-as-correctness framework that

we believe should motivate a new direction of research using formal

verification methods to prove performance properties of network al-

gorithms and protocols. We demonstrated its efficacy by analyzing

AIMD, Copa, and BBR. We view this work as setting the initiat steps

toward mathematically modelling congestion control in a way that

captures the complex behaviors on real network paths. Theorems

and bounds proved in this model can offer deeper insights into

what is possible with end-to-end congestion control.

This work does not raise any ethical issues.

ACKNOWLEDGMENTS
We thank Behnaz Arzani (our shepherd) and the SIGCOMM re-

viewers for their thoughtful comments. This work was funded in

part by NSF grants CNS-1407470, CNS-2006827, CNS-1563826, CNS-

1526791, and CNS-1751009, a Cisco Research Center Award, and a

Microsoft Faculty Fellowship.

12

Toward Formally Verifying Congestion Control Behavior SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

REFERENCES
[1] Accessed 2021. The ns-2 simulator. https://isi.edu/nsnam/ns/.

[2] Accessed 2021. The ns-3 simulator. https://nsnam.org/.

[3] Soheil Abbasloo, Chen-Yu Yen, and H Jonathan Chao. 2020. Classic meets mod-

ern: A pragmatic learning-based congestion control for the Internet. In ACM
SIGCOMM. 632–647.

[4] MohammadAlizadeh, Albert Greenberg, David AMaltz, Jitendra Padhye, Parveen

Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010. Data

Center TCP (DCTCP). In ACM SIGCOMM. 63–74.

[5] Venkat Arun andHari Balakrishnan. 2018. Copa: Practical delay-based congestion

control for the internet. In USENIX NSDI. 329–342.
[6] François Baccelli and Dohy Hong. 2000. TCP is max-plus linear and what it tells

us on its throughput. In ACM SIGCOMM CCR. 219–230.
[7] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe

Filliatre, Eduardo Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan

Murthy, et al. 1997. The Coq proof assistant reference manual: Version 6.1. Ph.D.
Dissertation. Inria.

[8] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017. A general

approach to network configuration verification. In ACM SIGCOMM. 155–168.

[9] Ryan Beckett, Xuan Kelvin Zou, Shuyuan Zhang, Sharad Malik, Jennifer Rexford,

and David Walker. 2014. An assertion language for debugging SDN applications.

In ACM HotSDN. 91–96.
[10] Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael Smith,

and Keith Wansbrough. 2005. Rigorous specification and conformance testing

techniques for network protocols, as applied to TCP, UDP, and Sockets. In ACM
SIGCOMM. 265–276.

[11] Anne Bouillard, Marc Boyer, and Euriell Le Corronc. 2018. Deterministic Network
Calculus: From Theory to Practical Implementation. John Wiley & Sons.

[12] L. S. Brakmo, S.W. O’Malley, and L. L. Peterson. 1994. TCPVegas: NewTechniques

for Congestion Detection and Avoidance. In ACM SIGCOMM. 24–35.

[13] Neal Cardwell, Yuchung Cheng, Lawrence Brakmo, Matt Mathis, Barath Ragha-

van, Nandita Dukkipati, Hsiao-keng Jerry Chu, Andreas Terzis, and Tom Herbert.

2013. packetdrill: Scriptable network stack testing, from sockets to packets. In

USENIX ATC. 213–218.
[14] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and

Van Jacobson. 2016. BBR: Congestion-based congestion control. In ACM Queue.
58–66.

[15] D-M. Chiu and R. Jain. 1989. Analysis of the Increase and Decrease Algorithms

for Congestion Avoidance in Computer Networks. Computer Networks and ISDN
Systems 17, 1–14.

[16] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In

International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[17] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob

von Raumer. 2015. The Lean theorem prover (system description). In International
Conference on Automated Deduction. Springer, 378–388.

[18] Mo Dong, Qingxi Li, Doron Zarchy, P Brighten Godfrey, and Michael Schapira.

2015. PCC: Re-architecting Congestion Control for Consistent High Performance.

In USENIX NSDI 2015. 395–408.
[19] MoDong, TongMeng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten Godfrey,

and Michael Schapira. 2018. PCC vivace: Online-learning congestion control. In

USENIX NSDI. 343–356.
[20] Nandita Dukkipati. 2008. Rate Control Protocol (RCP): Congestion control to make

flows complete quickly. Citeseer.
[21] S. Floyd. 1994. TCP and Explicit Congestion Notification. SIGCOMM CCR 24, 5

(Oct. 1994).

[22] S. Floyd, T. Henderson, A. Gurtov, and Y. Nishida. 2004. The NewReno Modifica-

tion to TCP’s Fast Recovery Algorithm. RFC 6582, IETF.

[23] Nitin Garg. 2019. Evaluating COPA congestion control for improved video

performance. https://engineering.fb.com/2019/11/17/video-engineering/copa/.

[24] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and Ratul Mahajan.

2016. Fast control plane analysis using an abstract representation. In ACM
SIGCOMM. 300–313.

[25] Prateesh Goyal, Anup Agarwal, Ravi Netravali, Mohammad Alizadeh, and Hari

Balakrishnan. 2020. ABC: A Simple Explicit Congestion Controller for Wireless

Networks. In USENIX NSDI. 353–372.
[26] Stephen Hemminger, Fabio Ludovici, and Hagen Pfeifer Paul. 2011. The Linux

netem network emulator. https://www.linux.org/docs/man8/tc-netem.html.

[27] Facebook Inc. Accessed July 2021. MVFST: Facebook’s QUIC implementa-

tion, commit e04fcaac. https://github.com/facebookincubator/mvfst/commit/

e04fcaacc1633c1bae78c61aac1f5f8a5784f657.

[28] Jana Iyengar and Martin Thomson. 2018. QUIC: A UDP-based multiplexed and

secure transport. Internet Engineering Task Force, Internet-Draft.
[29] Dina Katabi, Mark Handley, and Charlie Rohrs. 2002. Congestion control for

high bandwidth-delay product networks. In ACM SIGCOMM. 89–102.

[30] Changhoon Kim, Parag Bhide, Ed Doe, Hugh Holbrook, Anoop Ghanwani, Dan

Daly, Mukesh Hira, and Bruce Davie. 2016. In-band Network Telemetry (INT).

https://p4.org/assets/INT-current-spec.pdf.

[31] Hwangnam Kim and Jennifer C Hou. 2004. Network calculus based simulation

for tcp congestion control: Theorems, implementation and evaluation. In IEEE
INFOCOM, Vol. 4. IEEE, 2844–2855.

[32] Nupur Kothari, Ratul Mahajan, Todd Millstein, Ramesh Govindan, and Madanlal

Musuvathi. 2011. Finding protocol manipulation attacks. In ACM SIGCOMM.

26–37.

[33] Jean-Yves Le Boudec and Patrick Thiran. 2001. Network calculus: a theory of
deterministic queuing systems for the internet. Vol. 2050. Springer Science &

Business Media.

[34] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn Romanow. 2012. TCP

Selective Acknowledgment Options. RFC 1996, IETF.

[35] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott. 1997. The

macroscopic behavior of the TCP congestion avoidance algorithm. ACM SIG-
COMM CCR 27, 3, 67–82.

[36] Tong Meng, Neta Rozen Schiff, P Brighten Godfrey, and Michael Schapira. 2020.

PCC proteus: Scavenger transport and beyond. In ACM SIGCOMM. 615–631.

[37] Akshay Narayan, Frank Cangialosi, Deepti Raghavan, Prateesh Goyal, Srinivas

Narayana, Radhika Mittal, Mohammad Alizadeh, and Hari Balakrishnan. 2018.

Restructuring endpoint congestion control. In ACM SIGCOMM. 30–43.

[38] Yuchung Cheng Neal Cardwell. 2015. The Linux Kernel,

commit 43e122b0. https://github.com/torvalds/linux/commit/

43e122b014c955a33220fabbd09c4b5e4f422c3c.

[39] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein,

James Mickens, and Hari Balakrishnan. 2015. Mahimahi: Accurate Record-and-

Replay for HTTP. In USENIX ATC. 417–429.
[40] Matt Sargent, Jerry Chu, Dr Vern Paxson, and Mark Allman. 2011. Computing

TCP’s retransmission timer. Technical Report. RFC 6289.

[41] R. Srikant. 2004. The Mathematics of Internet Congestion Control. Springer Science
& Business Media.

[42] Bo Su, Xianliang Jiang, Guang Jin, and Haiming Chen. 2020. Rethinking the rate

estimation of BBR congestion control. Electronics Letters 56, 5 (2020), 239–241.
[43] Wei Sun, Lisong Xu, and Sebastian Elbaum. 2017. Improving the cost-effectiveness

of symbolic testing techniques for transport protocol implementations under

packet dynamics. In ACM SIGSOFT. 79–89.
[44] Wei Sun, Lisong Xu, and Sebastian Elbaum. 2018. Limitations of emulating

realistic network environments for correctness testing of internet applications.

In 2018 IEEE International Conference on Communications (ICC). IEEE, 1–6.
[45] Wei Sun, Lisong Xu, and Sebastian Elbaum. 2018. Scalably testing congestion

control algorithms of real-world TCP implementations. In IEEE International
Conference on Communications (ICC). 1–7.

[46] Wei Sun, Lisong Xu, Sebastian Elbaum, and Di Zhao. 2019. Model-Agnostic and

Efficient Exploration of Numerical State Space of Real-World TCP Congestion

Control Implementations. In USENIX NSDI. 719–734.
[47] Yue Wang, Kanglian Zhao, Wenfeng Li, Juan Fraire, Zhili Sun, and Yuan Fang.

2018. Performance evaluation of QUIC with BBR in satellite internet. In IEEE
International Conference on Wireless for Space and Extreme Environments (WiSEE).
IEEE, 195–199.

[48] D.X. Wei, C. Jin, S.H. Low, and S. Hegde. 2006. FAST TCP: Motivation, Archi-

tecture, Algorithms, Performance. IEEE/ACM Trans. on Networking 14, 6 (2006),

1246–1259.

[49] Keith Winstein and Hari Balakrishnan. 2013. TCP ex Machina: Computer-

Generated Congestion Control. In ACM SIGCOMM 2013.
[50] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. 2013. Stochastic

Forecasts Achieve High Throughput and Low Delay over Cellular Networks. In

USENIX NSDI. 459–471.
[51] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley. 2011.

Design, Implementation and Evaluation of Congestion Control for Multipath

TCP.. In USENIX NSDI, Vol. 11. 8–8.
[52] Yaxiong Xie, Fan Yi, and Kyle Jamieson. 2020. PBE-CC: Congestion Control via

Endpoint-Centric, Physical-Layer Bandwidth Measurements. In ACM SIGCOMM.

451–464.

[53] Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi

Zhang, Philip Levis, and Keith Winstein. 2020. Learning in situ: a randomized

experiment in video streaming. In USENIX NSDI. 495–511.
[54] Francis Y Yan, Jestin Ma, Greg D Hill, Deepti Raghavan, Riad S Wahby, Philip

Levis, and Keith Winstein. 2018. Pantheon: the training ground for Internet

congestion-control research. In USENIX ATC. 731–743.

13

https://isi.edu/nsnam/ns/
https://nsnam.org/
https://engineering.fb.com/2019/11/17/video-engineering/copa/
https://www.linux.org/docs/man8/tc-netem.html
https://github.com/facebookincubator/mvfst/commit/e04fcaacc1633c1bae78c61aac1f5f8a5784f657
https://github.com/facebookincubator/mvfst/commit/e04fcaacc1633c1bae78c61aac1f5f8a5784f657
https://p4.org/assets/INT-current-spec.pdf
https://github.com/torvalds/linux/commit/43e122b014c955a33220fabbd09c4b5e4f422c3c
https://github.com/torvalds/linux/commit/43e122b014c955a33220fabbd09c4b5e4f422c3c

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA V. Arun et al.

Appendices are supportingmaterial that have not been peer-reviewed.

A AIMD COUNTEREXAMPLE IN DETAIL

0

5

10

Cu
m

ul
at

iv
e

by
te

s (
in

 B
DP

)

S(t)
A(t) - L(t)
A(t)

0 1 2 3 4 5 6 7
Time (in Rₘ)

0

2

4

By
te

s i
n

BD
P cwnd(t)

inflight(t) - cwnd(t)

Figure 11: A trace of how a burst of 2𝐶𝐷 bytes can be orches-
trated by combining the two mechanisms in §7

We discuss further the example in Section §7 where CCAC found

a way to exploit AIMD to cause a burst of 2𝐶𝐷 bytes. Figure 11

shows a trace of the various quantities in the path model that

induces such a burst at time 7𝑅𝑚 .

The path-server begins by inflating the RTT to be 𝑅𝑚 +𝐷 , which
causes cwnd to increase to 𝐶 (𝑅𝑚 + 𝐷) + 𝛽 = 4𝐶𝑅𝑚 without en-

countering loss. This corresponds to 𝑆 (𝑡) touching the lower bound
in Figure 11. When cwnd exceeds 4𝐶𝑅𝑚 , one packet is dropped,

at time 1𝑅𝑚 . This packet was sent when the sender received an

ACK 1𝑅𝑚 earlier at time 0. ACKs are sent smoothly by the path-

server from time 0 to time 2𝑅𝑚 . Hence the next 2𝐶𝐷 bytes (from

time 1𝑅𝑚 to 3𝑅𝑚 from the sender after the dropped packet will

arrive smoothly as well. When the drop is detected at time 4𝑅𝑚 ,

cwnd halves to 2𝐶𝑅𝑚 . At this point, 3𝐶𝑅𝑚 bytes are in flight. At

time 𝑅𝑚 later (at time 5𝑅𝑚), only 2𝐶𝑅𝑚 bytes are in flight, making

the sender ready to burst again. When packets after time 5𝑅𝑚 are

ACKed at time 7𝑅𝑚 , the sender detects the 𝐶𝑅𝑚 lost packets and

bursts that many. At time 6𝑅𝑚 , the path-server combines this burst

with another 𝐶𝑅𝑚 of ACKs, causing a total burst of 2𝐶𝑅𝑚 at time

7𝑅𝑚 , which overwhelms the buffer.

B EXTENDING CCAC
In-network support. Some CCAs [4, 20, 25, 29] use in-network

support. To model them in CCAC, it does not suffice to simply

run the in-network algorithms treating the path-server as a net-

work server that marks or sets information in packet headers. This

is because the queue on the path-server represents all enqueued

packets on the path, not just those at the bottleneck link. The

non-composing model we used for analyzing Copa in §8 offers

a solution, because it only models one network “box”. Thus we

can sandwich the non-composing path-server between two com-

posing path-servers to emulate a link with many boxes where the

non-composing path-server represents the bottleneck. Thus, an

algorithm where only the bottleneck link is involved in providing

feedback can be implemented on the non-composing path-server.

Receiver-driven CCA. To emulate such an algorithm where

control decisions are made by the receiver and enforced at the

sender, one can use two path-servers, one from the sender to the

receiver and one from the receiver to the sender. Each side also

needs a propagation delay (analogous to 𝑅𝑚), perhaps identical in

each direction. Differences in propagation delay smaller than 𝐷 can

be captured by the non-deterministic path-servers.

C MORE SMT DETAILS
Recall that 𝐿(𝑡) denotes the total number of bytes lost by the net-

work. The CCA cannot directly observe this. It only observes 𝐿𝑑 (𝑡),
which denotes the cumulative number of bytes that it detected as

lost. In the continuous model, 𝐿𝑑 (𝑡) is a time-shifted version of 𝐿

where the time-shift depends on the gap between 𝐴 and 𝑆 , which

itself is time-varying. As discussed in §5, when a quantity depends

on the gap between two lines, discretization complicates the con-

straints. if a loss happened at time 𝑡 (i.e. 𝐿′(𝑡) > 0), the sender can

detect it at time 𝑡 +Δ𝑡 +𝑅 if𝐴(𝑡) −𝐿(𝑡) +dupacks ≤ 𝑆 (𝑡 +Δ𝑡). Here,
Δ𝑡 is the time-varying component of the time-shift. This constraint

ensures that the sender has received ACKs for at least dupacks num-

ber of bytes that were sent after the loss happened. Here, 𝑅 is the

propagation delay between when the server serves the packets (i.e.

𝑆 (𝑡)) to when the ack reaches the sender.

Consider two points on the discrete 𝐿(𝑡) curve, 𝐿𝑡 and 𝐿𝑡+1,
where 𝐿𝑡+1 > 𝐿𝑡 indicating that a loss occurred. The CCA can only

detect this loss event after some delay. Now consider the corre-

sponding points on the 𝐿𝑑 (𝑡) curve. First, 𝐿𝑑 (𝑡) can capture that

loss event using one or more points, because of time variance in

the gap between 𝐴 and 𝑆 . Second, any discrete point on the loss

detection curve 𝐿𝑑
𝑡+Δ𝑡 has to be bounded by 𝐿𝑡 ≤ 𝐿𝑑𝑡+Δ𝑡 ≤ 𝐿𝑡+1. In

order to capture this relationship between the loss curve and loss de-

tection curve in SMT, we introduce a variable detectable𝑡,Δ𝑡 , which
equals 1 if a loss event that happened at 𝑡 − Δ𝑡 is detectable at time

𝑡 , and it’s zero otherwise. CCAs often need to know when losses are

detected. 𝐿𝑑𝑡 represents the cumulative number of losses detected
upto time 𝑡 . Many CCAs detect loss on the receipt of a set threshold

of duplicate acknowledgements. This threshold is represented by

an SMT variable dupacks that the solver is free to choose. Loss can

be detected at time 𝑡 only if that loss happened at time ≤ 𝑡 −𝑅 −Δ𝑡
and 𝑆 (𝑡 − 𝑅) ≥ 𝐴(𝑡 − 𝑅 − Δ𝑡) − 𝐿(𝑡 − 𝑅 − Δ𝑡) + dupacks. Hence
we formally define detectable𝑡,Δ𝑡 = 𝑆𝑡−𝑅 ≥ 𝐴𝑡−𝑅−Δ𝑡 − 𝐿𝑡−𝑅−Δ𝑡 +
dupacks and add the constraints detectable𝑡,Δ𝑡 → 𝐿𝑑𝑡 ≥ 𝐿𝑡−𝑅−Δ𝑡
and ¬detectable𝑡,Δ𝑡 → 𝐿𝑑𝑡 ≤ 𝐿𝑡−𝑅−Δ𝑡 for each Δ𝑡 ∈ {0, · · · , 𝑡}.

D PROOFS
Here we prove some of the theorems referenced in the paper. For

some of these theorems, we have written computer-checked proofs

in Lean [17], a proof assistant similar to Coq [7], which can be

found at https://projects.csail.mit.edu/ccac. For these theorems, we

only give the theorem statement and the proof intuition in English

here and leave the details to the Lean proof.

Theorem 3. A path-server with parameters (𝐶, 𝐷, 𝛽) can emulate
a constant bit rate (CBR) server with link rate 𝐶 and buffer size 𝛽

14

https://projects.csail.mit.edu/ccac

Toward Formally Verifying Congestion Control Behavior SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

followed by a delay box. The delay box can non-deterministically
delay every byte by an arbitrary amount as long as it does not reorder
bytes and no byte stays in the delay box for longer than 𝐷 seconds.

Proof. We need to show that, given a function 𝑓 (𝑥) from byte ID

(i.e. sequence number) to how long it stays in the delay box, we can

produce a corresponding𝑊 (𝑡) that is compatible with the arrival,

service and loss curves of the CBR+delay box (refer Table 1 for

notation). The𝑊 (𝑡) in this case is simple: waste whenever allowed.

That is, a token only enters the token queue if𝑇 (𝑡) < 𝑄 (𝑡), because
of which every token is paired on arrival with a byte; this is the

byte it will be dequeued with. With this choice, we notice that a

byte gets paired paired with a token at the same time that it would

have gotten dequeued from the corresponding CBR server, since

tokens arrive at𝐶 bytes/second. Note,𝑄 (𝑡) can be greater than𝑇 (𝑡)
if bytes arrive faster than tokens, which corresponds to those bytes

being queued in the CBR server’s buffer. When 𝑄 (𝑡) − 𝑇 (𝑡) > 𝛽 ,

both the path-server and the CBR server will drop packets.

Once a byte has been paired with a token, it has 𝐷 seconds to get

dequeued. The path-server can now choose when to dequeue each

byte to match 𝑓 (𝑥) which is always possible since 𝑓 (𝑥) ≤ 𝐷,∀𝑥 and
it does not cause reordering of bytes. This proves that our choice

of𝑊 (𝑡) is compatible with the constraints of the generalized token

bucket filter □

Composition theorems. To show that path-servers can com-

pose, we show how to create a path-sever 𝜏𝑠 that can emulate all

behaviors that are possible when path servers 𝜏1 and 𝜏2 are con-

nected. In all these theorems, we assume the initial conditions are

such that 𝐴(𝑡) = 𝑆 (𝑡) =𝑊 (𝑡) = 𝐿(𝑡) = 0 when 𝑡 ≤ 0. This simpli-

fies the proofs without loosing generality since the path-server can

“evolve” to whatever state is needed.

Notation. Each path-server has its own 𝐴(𝑡), 𝑆 (𝑡) etc. We use

the dotted-notation to show this. E.g. 𝜏1’s service curve is 𝜏1 .𝐴(𝑡)
and 𝜏𝑠 ’s waste curve is 𝜏𝑠 .𝑊 (𝑡). Refer Table 1 for a glossary of

symbols used. Further, the upper and lower bounds on 𝑆 (𝑡) are
denoted as 𝑢 (𝑡) and 𝑙 (𝑡) respectively. Hence 𝜏1 .𝑢 (𝑡) = 𝜏1 .𝐶 ∗ 𝑡 −
𝜏1 .𝑊 (𝑡) and 𝜏1 .𝑙 (𝑡) = 𝜏1 .𝑢 (𝑡 −𝐷) = 𝜏1 .𝐶 ∗ (𝑡 −𝜏1 .𝐷) −𝜏1 .𝑊 (𝑡 −𝐷).

When two path-servers 𝜏1 and 𝜏2 are connected in series, the

service curve of 𝜏1 equals the arrival curve of 𝜏2. We denote this as

𝜏1 .𝑆 (𝑡) = 𝜏2 .𝐴(𝑡). We wish to prove that a path-server with jitter

parameter 𝜏1 .𝐷 + 𝜏2 .𝐷 can emulate a superset of the things the

composed version can emulate. To do so, given traces of any two

path-servers 𝜏1 and 𝜏2 (a trace is a collection of all the functions

and parameters such as 𝐶 and 𝐴(𝑡)), we need to produce a trace

for a third that has exactly the same behavior as the composition.

That is, 𝜏𝑠 .𝐴(𝑡) = 𝜏1 .𝐴(𝑡) and 𝜏𝑠 .𝑆 (𝑡) = 𝜏2 .𝑆 (𝑡). We split the proof

of composition of the model into two parts. One where 𝜏1 .𝐶 ≤ 𝜏2 .𝐶

and another where 𝜏1 .𝐶 ≥ 𝜏2 .𝐶 .

The following proofs will use the principle of mathematical

induction on time, and hence treat time as an integer. However,

unlike in Section §5, here a time-step can be arbitrarily small. Thus,

for all practical purposes, time is continuous.

D.1 Case 1: Second Path-Server is Faster
Before we prove the main theorem, we prove that when 𝜏1 .𝐶 ≤ 𝜏2 .𝐶

and 𝜏2 .𝛽 ≥ 𝜏1 .𝐶𝜏1 .𝐷 , 𝜏2 can never lose packets no matter how bytes

arrive or what non-deterministic choices each makes. This makes

intuitive sense, since 𝜏2 .𝛽 is bigger than the largest burst 𝜏1 can

cause.

Theorem 4. For every pair of traces 𝜏1, 𝜏2 that are placed in series
(i.e. 𝜏2 .𝐴(𝑡) = 𝜏1 .𝑆 (𝑡)), where 𝜏1 .𝐶 ≤ 𝜏2 .𝐶 and 𝜏2 .𝛽 ≥ 𝜏1 .𝐶 · 𝜏1 .𝐷 , the
following holds: 1) 𝜏2 .𝐿(𝑡) = 0 and 2) 𝜏1 .𝑙 (𝑡) ≤ 𝜏2 .𝑢 (𝑡)

Proof. We only give the outline of the proof here since we

wrote a computer-checked proof in Lean which are available at

https://projects.csail.mit.edu/ccac.

The proof uses induction on time, where we prove both asser-

tions in the theorem statement simultaneously. The intuitive argu-

ment is that if 𝜏1 .𝑙 (𝑡 − 1) ≤ 𝜏2 .𝑢 (𝑡 − 1) then 𝜏1 .𝑆 (𝑡) ≤ 𝜏1 .𝑙 (𝑡) cannot
be more than 𝜏2 .𝑢 (𝑡) + 𝜏1 .𝐶𝜏1 .𝐷 ≤ 𝜏2 .𝑢 (𝑡) + 𝛽 . Thus 𝜏2’s condition

for loss can never be met. In proving this, we use the fact that the

upper and lower bounds (i.e. 𝑢 (𝑡) and 𝑙 (𝑡)) cannot increase faster
than 𝐶 bytes per timestep since𝑊 (𝑡) is a non-decreasing function.

Then we prove 𝜏1 .𝑙 (𝑡) ≤ 𝜏2 .𝑢 (𝑡) using the fact that 𝜏1 .𝐶 ≤ 𝜏2 .𝐶

and 𝜏2 is not allowed to waste when 𝜏1 .𝑆 (𝑡) = 𝜏2 .𝐴(𝑡) is greater
than 𝜏2 .𝑢 (𝑡). This finishes the induction step. □

Theorem 5. For every pair of traces 𝜏1, 𝜏2 where 𝜏1 .𝐶 ≤ 𝜏2 .𝐶 ,
𝜏2 .𝛽 ≥ 𝜏1 .𝐶 · 𝜏1 .𝐷 and 𝜏2 .𝐴(𝑡) = 𝜏1 .𝑆 (𝑡), there exists a trace 𝜏𝑠 such
that

(1) 𝜏𝑠 .𝐶 = 𝜏1 .𝐶

(2) 𝜏𝑠 .𝐷 = 𝜏1 .𝐷 + 𝜏2 .𝐷

(3) 𝜏𝑠 .𝛽 = 𝜏1 .𝛽

(4) 𝜏𝑠 .𝐴(𝑡) = 𝜏1 .𝐴(𝑡)
(5) 𝜏𝑠 .𝑆 (𝑡) = 𝜏2 .𝑆 (𝑡)
(6) 𝜏𝑠 .𝐿(𝑡) = 𝜏1 .𝐿(𝑡)

Proof. Again we only give the outline of the proof here since

we wrote computer-checked proofs in Lean which are available at

https://projects.csail.mit.edu/ccac. To produce 𝜏𝑠 , we need to pick a

𝜏𝑠 .𝑊 (𝑡) that is compatible with 𝜏𝑠 ’s arrival, service and loss curves

(i.e. satisfies all the constraints listed in section §4.1). Here, simply

setting 𝜏𝑠 .𝑊 (𝑡) = 𝜏1 .𝑊 (𝑡) does the job.
Note, Theorem 4 implies 𝜏2 .𝐿(𝑡) = 0 and 𝜏1 .𝑙 (𝑡) ≤ 𝜏2 .𝑢 (𝑡).

Showing that 𝜏𝑠 .𝑆 (𝑡) ≤ 𝜏𝑠 .𝑢 (𝑡) is straightforward since 𝜏𝑠 .𝑆 (𝑡) =
𝜏2 .𝑆 (𝑡) ≤ 𝜏1 .𝑆 (𝑡) ≤ 𝜏1 .𝑢 (𝑡) = 𝜏𝑠 .𝑢 (𝑡).

Proving 𝜏𝑠 .𝑆 (𝑡) ≥ 𝜏𝑠 .𝑙 (𝑡) requires induction on 𝑡 , but is rela-

tively straightforward. Finally, since 𝜏𝑠 .𝑢 (𝑡) = 𝜏1 .𝑢 (𝑡), their loss
thresholds are identical. Hence 𝜏𝑠 can waste tokens and lose packets

whenever 𝜏1 can. □

D.2 Case 2: First Path-Server is Faster
We only prove this theorem when buffers are infinitely large and

hence there is no loss.

Theorem 6. For every pair of traces 𝜏1, 𝜏2 where 𝜏1 .𝐶 ≥ 𝜏2 .𝐶 ,
𝜏2 .𝐴(𝑡) = 𝜏1 .𝑆 (𝑡), 𝜏1 .𝛽 = 𝜏2 .𝛽 = ∞ and 𝜏1 .𝐿(𝑡) = 𝜏2 .𝐿(𝑡) = 0, there
exists a trace 𝜏𝑠 such that

(1) 𝜏𝑠 .𝐶 = 𝜏2 .𝐶

(2) 𝜏𝑠 .𝐷 = 𝜏1 .𝐷 + 𝜏2 .𝐷

(3) 𝜏𝑠 .𝐴(𝑡) = 𝜏1 .𝐴(𝑡)
(4) 𝜏𝑠 .𝑆 (𝑡) = 𝜏2 .𝑆 (𝑡)
(5) 𝜏𝑠 .𝛽 = ∞

15

https://projects.csail.mit.edu/ccac
https://projects.csail.mit.edu/ccac

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA V. Arun et al.

(6) 𝜏𝑠 .𝐿(𝑡) = 0

Proof. To show that such a 𝜏𝑠 exists, we need to construct a

𝜏𝑠 .𝑊 (𝑡), since all other functions are already defined in terms of 𝜏1

and 𝜏2. Then we prove that it satisfies the constraints, namely 1)

when 𝜏𝑠 .𝑊 (𝑡) increases, waste is allowed and 2) 𝜏𝑠 ’s bounds on 𝑆 (𝑡)
contain the full range of 𝜏2’s bounds. We construct it as follows.

We start with 𝜏2 .𝑊 (0) = −𝜏2 .𝐶 · 𝜏2 .𝐷 . We construct 𝜏𝑠 .𝑊 using

the following algorithm. The algorithm has two states. It starts in

state 1 in timestep 0 with 𝜏𝑠 .𝑊 (0) = 0. Suppose we have decided

the state and 𝜏𝑠 .𝑊 for time 𝑡 , we decide these values for 𝑡 + 1 as

follows.

(1) State 1 [tracking]: If 𝜏1 .𝑙 (𝑡+1) ≥ 𝜏2 .𝑢 (𝑡+1), transition to state
2 in timestep 𝑡+1 and set 𝜏𝑠 .𝑊 (𝑡+1) ← 𝜏𝑠 .𝑊 (𝑡). Else remain

in state 1 and set 𝜏𝑠 .𝑊 (𝑡 + 1) ←𝑚𝑎𝑥 (𝜏𝑠 .𝑊 (𝑡), 𝜏1 .𝑊 (𝑡 + 1) −
Δ𝐶 ∗ 𝑡 where Δ𝐶 = 𝜏1 .𝐶 − 𝜏𝑠 .𝐶 ≥ 0

(2) State 2 [no-tracking]: If 𝜏𝑠 .𝑢 (𝑡) + 𝜏2 .𝐶 ≥ 𝜏1 .𝑢 (𝑡 + 1), tran-
sition to state 1 in timestep 𝑡 + 1 and set 𝜏𝑠 .𝑊 (𝑡 + 1) ←
𝑚𝑎𝑥 (𝜏𝑠 .𝑊 (𝑡), 𝜏1 .𝑊 (𝑡 + 1) − Δ𝐶 ∗ 𝑡). Else remain in state 2

and set 𝜏𝑠 .𝑊 (𝑡 + 1) ← 𝜏𝑠 .𝑊 (𝑡)
Note, when we set 𝜏𝑠 .𝑊 (𝑡 + 1) ← 𝜏1 .𝑊 (𝑡 + 1) − Δ𝐶 ∗ 𝑡 , we

are setting 𝜏𝑠 .𝑊 (𝑡 + 1) such that 𝜏𝑠 .𝑢 (𝑡 + 1) = 𝜏1 .𝑢 (𝑡 + 1). 𝜏𝑠 .𝑊 is

non-decreasing by construction.

We need to show that 𝜏𝑠 is allowed to waste whenever the al-

gorithm above causes 𝜏𝑠 .𝑊 (𝑡) to increase. The following claim

establishes this

Claim 1: If 𝜏𝑠 .𝑊 (𝑡) < 𝜏𝑠 .𝑊 (𝑡 + 1) then, 𝜏1 .𝐴(𝑡 + 1) ≤ 𝜏𝑠 .𝑢 (𝑡 + 1)
Intuitively,𝜏𝑠 .𝑊 (𝑡) increases onlywhen𝜏𝑠 .𝑢 (𝑡) is tracking𝜏1 .𝑢 (𝑡),

which only happens when 𝜏1 .𝑢 (𝑡)’s slope is < 𝐶 . Thus 𝜏1 must be

wasting and hence 𝜏1 .𝐴(𝑡) ≤ 𝜏1 .𝑢 (𝑡) = 𝜏𝑠 .𝑢 (𝑡). We now give the

detailed argument.

The algorithm only changes 𝜏𝑠 .𝑊 when a) we remain in state 1

or b) when we transition to state 1.

Let’s analyze a) first, where 𝜏𝑠 .𝑊 is updated in state 1. Here

𝜏𝑠 .𝑊 (𝑡) =𝑚𝑎𝑥 (𝜏𝑠 .𝑊 (𝑡 − 1), 𝜏1 .𝑊 (𝑡) − Δ𝐶 ∗ 𝑡) ≥ 𝜏1 .𝑊 (𝑡) − Δ𝐶 ∗ 𝑡
and 𝜏𝑠 .𝑊 (𝑡 + 1) = 𝜏1 .𝑊 (𝑡 + 1) − Δ𝐶 ∗ (𝑡 + 1). Hence 𝜏𝑠 .𝑊 (𝑡) <
𝜏𝑠 .𝑊 (𝑡 + 1) ⇒ 𝜏1 .𝑊 (𝑡) < 𝜏1 .𝑊 (𝑡 + 1) − Δ𝐶 ≤ 𝜏1 .𝑊 (𝑡 + 1). Hence
𝜏1 .𝑊 increases. But this implies that 𝜏1 .𝐴(𝑡 +1) ≤ 𝜏1 .𝑢 (𝑡 +1) (recall,
∀𝑡, 𝜏1 .𝐿(𝑡) = 0). But, 𝜏𝑠 .𝑢 (𝑡 + 1) = 𝜏𝑠 .𝐶 ∗ (𝑡 + 1) − 𝜏𝑠 .𝑊 (𝑡 + 1) =
𝜏1 .𝑢 (𝑡 +1). Hence 𝜏1 .𝐴(𝑡 +1) ≤ 𝜏𝑠 .𝑢 (𝑡 +1) which is what we wanted
to show.

In case b) we first show 𝜏𝑠 .𝑢 (𝑡) < 𝜏1 .𝑢 (𝑡).We know that 𝜏𝑠 .𝑢 (𝑡) ≤
𝜏𝑠 .𝑢 (𝑡 − 1) + 𝜏2 .𝐶 because 𝜏𝑠 .𝑊 is non-decreasing. This has to be

< 𝜏1 .𝑢 (𝑡). If not, and we were in state 2 at 𝑡 − 1, we would have

transitioned to state 1 for timestep 𝑡 . If we were in state 1 at 𝑡 − 1

and transition to state 2 at 𝑡 then we did not change 𝜏𝑠 .𝑊 (𝑡 + 1),
hence there is nothing to prove.

Now, it suffices to show that 𝜏1 .𝑊 increased (i.e. 𝜏1 .𝑊 (𝑡 + 1) >
𝜏1 .𝑊 (𝑡)), since then 𝜏1 .𝐴(𝑡 + 1) ≤ 𝜏1 .𝑢 (𝑡 + 1) = 𝜏𝑠 .𝑢 (𝑡 + 1). If 𝜏1 .𝑊

did not increase, then 𝜏1 .𝑢 (𝑡 + 1) = 𝜏1 .𝑢 (𝑡) +𝜏1 .𝐶 ≥ 𝜏1 .𝑢 (𝑡) +𝜏2 .𝐶 >

𝜏𝑠 .𝑢 (𝑡) + 𝜏2 .𝐶 , which contradicts the condition for transitioning to

state 1. Hence 𝜏1 .𝑊 must have increased.

Next we need to argue that 𝜏𝑠 ’s bounds contains 𝜏2’s bounds

so that 𝜏𝑠 .𝑆 (𝑡) can track 𝜏2 .𝑆 (𝑡). Note that when we are in state

1 (tracking), the bounds for 𝜏1 and 𝜏2 overlap and 𝜏𝑠 .𝑢 (𝑡) tracks
𝜏1 .𝑢 (𝑡).

Since 𝜏𝑠 .𝐷 = 𝜏1 .𝐷 + 𝜏2 .𝐷 , 𝜏𝑠 ’s bounds contain the bounds for

both 𝜏1 and 𝜏2. When we are in state 2 (tracking), 𝜏𝑠 .𝑊 does not

increase. Therefore 𝜏𝑠 .𝑙 (𝑡) and 𝜏𝑠 .𝑢 (𝑡) increases at the same rate

as 𝜏2 .𝑙 (𝑡) and 𝜏2 .𝑢 (𝑡) respectively since 𝜏𝑠 .𝐶 = 𝜏2 .𝐶 . Hence if 𝜏𝑠 ’s

bounds contains 𝜏2’s bounds in the beginning, it will continue to

contain them.

Thuswe have shown that the 𝜏𝑠 .𝑊 (𝑡) generated by the algorithm
satisfies the constraints.

□

Finally, we prove the composition theorem when buffers are

infinite and there is no loss using the theorems above.

Theorem 7. For every pair of traces 𝜏1, 𝜏2 that are placed in series
(i.e. 𝜏2 .𝐴(𝑡) = 𝜏1 .𝑆 (𝑡)), 𝜏1 .𝛽 = 𝜏2 .𝛽 = ∞, there exists a trace 𝜏𝑠 such
that

(1) 𝜏𝑠 .𝐶 = min(𝜏1 .𝐶, 𝜏2 .𝐶)
(2) 𝜏𝑠 .𝐷 = 𝜏1 .𝐷 + 𝜏2 .𝐷

(3) 𝜏𝑠 .𝐴(𝑡) = 𝜏1 .𝐴(𝑡)
(4) 𝜏𝑠 .𝑆 (𝑡) = 𝜏2 .𝑆 (𝑡)
(5) 𝜏𝑠 .𝐿(𝑡) = 0

Proof. This follows immediately from Theorems 5 and 6 if we

set the buffer size to be infinity in theorem 5. □

16

	Abstract
	1 Introduction
	2 Motivation
	3 Overview
	4 The Path Model
	4.1 Model Specification
	4.2 The Set of Paths CCAC Captures
	4.3 Expressing CCAs
	4.4 Discussion

	5 Formal Analysis using SMT Solvers
	5.1 SMT Formulation
	5.2 Asking Queries about CCAs
	5.3 Parameters and Linearity
	5.4 Evaluation via Case Studies

	6 Case Study 1: BBR
	7 Case Study 2: AIMD
	7.1 The Surprise
	7.2 AIMD's Steady-State Analysis

	8 Case Study 3: Copa
	8.1 Worst-Case Utilization
	8.2 Copa's Steady-State Analysis

	9 Limitations and Future Work
	10 Related Work
	11 Conclusion
	References
	A AIMD counterexample in detail
	B Extending CCAC
	C More SMT Details
	D Proofs
	D.1 Case 1: Second Path-Server is Faster
	D.2 Case 2: First Path-Server is Faster

