Eiffel: Efficient and Flexible
Software Packet Scheduling

Ahmed Saeed, Yimeng Zhao, Nandita Dukkipati,
Mostafa Ammar, Ellen Zegura, Khaled Harras, and Amin Vahdat

- | Carnegie
Geg®ay Google jielon

University

| — L

AN
= ’ - on \
- - L o -l .
e e — n— : —. . .“-‘d h“‘ -.‘. -L.. »
: .- -~ p I e ”l'- - -
—_— - * Lam S e A Voo ‘
- he
4 - —— ol
. © 0@ o -

e ANt -

11-"

WAN Link

Datacenter Network

|
5@

q@ " u|
qq " P
g g g 1

- [BN BN BN BN B B B B B BN B | -

5
5@
s~E|

1
|
\

Competition for Bandwidth
at premium links between WAN traffic

=

WAN/Internet

Competition in the
datacenter LAN
between all traffic

\ 4

Competition for
i R T 2 X .
EEEEEHC SO rrzsgios - Bandwidth
SO Tk SO _ at the source
£ EZEEER R .
RO S S0 e between all traffic
SEEEEC 4 FECE FETRL

High speed links
EIEIE— S ~— (10-100 Gbps)

WAN/Internet * x

> 2% Diversity in traffic
L‘ i (WAN vs LAN and

High vs Low priority)
Large number of flows &2 @

(> 10k flows per machine)
4

Packet Scheduling

Scheduling determines the relative ordering as well
as transmission time of packets in a queuing data
structure with respect to some ranking function

Packet scheduling implements policies to solve

such problems
Traffic Isolation
Flow Completion Time Optimization

ongestion Control

pFabric: Minimal Near-Optimal Datacenter Transport

Mohammad Alizadeh'!, Shuang Yang', Milad Sharif', Sachin Katti',
Nick McKeown', Balaji Prabhakar', and Scott Shenker:

Stanford University ‘Insieme Networks *U.C. Berkeley / ICSI
{alizade, shyang, msharif, skatti, nickm, balaji}@stanford.edu shenker@icsi.berkeley.edu

Information-Agnostic Flow Scheduling for Commodity Data Centers

Wei Bai', Li Chen', Kai Chen', Dongsu Han?, Chen Tian®, Hao Wang!
1SING Group @ HKUST 2KAIST 3Nanjing Univ.

Silo: Predictable Message Latency in the Cloud

Keon Jang Justine Sherry* Hitesh Ballani Toby Moncaster*
Intel Labs UC Berkeley Microsoft Research University of Cambridge
Santa Clara, CA Berkeley, CA Cambridge, UK Cambridge, UK

ARQTRACT

BwE: Flexible, Hierarchical Bandwidth Allocation for
WAN Distributed Computing

Afian o

Alok Kumar Sushant Jain Uday Naik Anand Raghuraman
Nikhil Kasinadhuni Enrique Cauich Zermeno C. Stephen Gunn Jing
Aspi Siganporia

Bjorn Carlin Mihai Amarandei-Stavila ~ Mathieu Robin
Stephen Stuart Amin Vahdat
Google Inc.
bwe-sigcomm@google.com
ABSTRACT Keywords

WAN bandwidth remains a constrained resource that is eco-
nomically infeasible to substantially overprovision. Hence,
it is important to allocate capacity according to service pri-
ority and based on the incremental value of additional allo-
cation. For example, it may be the highest priority for one 1+ INTRODUCTION
service to receive 10Gb/s of bandwidth but upon reaching
such an allocation, incremental priority may drop sharply
favoring allocation to other services. Motivated by the ob-
servation that individual flows with fixed priority may not
be the ideal basis for bandwidth allocation, we present the
design and implementation of Bandwidth Enforcer (BWE),
a global, hierarchical bandwidth allocation infrastructure.
BWE supports: i) service-level bandwidth allocation follow-
ing prioritized bandwidth functions where a service can rep-
resent an arbitrary collection of flows, i) independent alloca-
tion and delegation policies according to user-defined hier-
archy, all accounting for a global view of bandwidth and fail-
d multi-path for intraffic
engineered networks, and iv) a central administrative point
10 override (perhaps faulty) policy during exceptional con:
ditions. BwE has delivered more service-effiient bandwidth
utilization and simpler management in production for mul
tiple years.

Bandwidth Allocation; Wide-Area Networks; Software-
Defined Network; Max-Min Fair

TCP-based bandwidth allocation to individual flows con-
tending for bandwidth on bottleneck links has served the In
ternet well for decades. However, this model of bandwidth
allocation assumes all flows are of equal priority and that all
flows benefit equally from any incremental share of available
bandwidth. It implicitly
cation model where a TCP flow captures the
needs of an application communicating across the Internet
‘This paper re-examines bandwidth allocation for an im-
portant, emerging trend, distributed computing running
across dedicated private WANS in support of cloud comput-
ing and service providers. Thousands of simultancous such
applications run across multiple global data centers, with
thousands of processes in each data center, cach potentially
maintaining thousands of individual active connections to
WAN traffic engine that site-pair
communication follows different network paths, each with
different bottlenecks. Individual services have vastly differ-

Matthew P. Grosvenor Malte Schwarzkopf
Andrew W. Moore

Tonel Gog
Steven Hand’

T

Queues don’t matter when you can JUMP them!

Robert N. M. Watson
Jon Crowcroft

University of Cambridge Computer Laboratory

now at Google, Inc

Christo Wilson
ucsb.ed

Datacenter Networks

Hitesh Ballani
com

Thomas Karagiannis
com

Better Never than Late: Meeting Deadlines in

Ant Rowstron

Friends, not Foes — Synthesizing Existing Transport

Strategies for Data Center Networks

Ali Munir'; Ghufran Baig?, Syed M. Irteza®, lhsan A. Qazi*,
Alex X. Liut, Fahad R. Dogar®
Michigan State University, 2LUMS, “Microsoft Research
{munirali, alexliu}@cse.msu.edu, {ghufran.baig, syed.irteza, ihsan.qazi}@lums.edu.pk,
fdogar@microsoft.com

Less is More: Trading a little Bandwidth for Ultra-Low Latency
in the Data Center

Mohammad Alizadeh, Abdul Kabbani', Tom Edsall*, Balaji Prabhakar,
Amin Vahdat'®, and Masato Yasudal

Stanford University 'Google *Cisco Systems

SU.C. San Diego INEC Corporation, Japan

End-to-end Performance Isolation through Virtual Datacenters

Sebastian Angel*, Hitesh Ballani, Thomas Karagiannis, Greg O’Shea, Eno Thereska

Microsoft Research

Abstract

The lack of performance isolation in multi-tenant dat-
acenters at appliances like middleboxes and storage
servers results in volatile application performance. To in-
sulate tenants, we propose giving them the abstraction of
adedicated virtual datacenter (VDC). VDCs encapsulate
end-to-end throughput guarantees—specified in a new
metric based on virtual request cost—that hold across
distributed appliances and the intervening network.

We present Pulsar, a system that offers tenants their
own VDCs. Pulsar comprises a logically centralized con-
troller that uses new mechanisms to estimate tenants’
demands and appliance capacities, and allocates data-
center resources based on flexible policies. These al-
locations are enforced at end-host hypervisors through
multi-resource token buckets that ensure tenants with
changing workloads cannot affect others. Pulsar’s design
does not require changes to applications, guest OSes,
or appliances. Through a prototype deployed across 113
VMs, three appliances, and a 40 Gbps network, we show
that Pulsar enforces tenants’ VDCs while imposing over-
heads of less than 2% at the data and control plane.

*The University of Texas at Austin

ter. A VDC is composed of virtual machines (VMs), and

ources like virtual appliances and a virtual network
that are associated with gl
guarantees are independent of tenants’ workloads, hold
across all VDC resources, and are therefore end-to-end.

Providing the VDC abstraction to tenants presents
two main challenges. First, tenants can be bottlenecked
at different appliances or network links, and chang-
ing workloads can cause these bottlenecks to shift over
time (§2.1). Second, resources consumed by a request
at an appliance can vary based on request characteristics
(type, size, etc.), appliance internals, and simultaneous
requests being serviced. For example, an SSD-backed
filestore appliance takes disproportionately longer to
serve WRITE requests than READ requests (§2.4). This
behavior has two implications: (i) the capacity, or max-
imum achi t put, of an varies de-
pending on the workload. This is problematic because
the amount of appliance resources that can be allocated
to tenants becomes a moving target. (i) Standard met-
rics for quantifying throughput, like requests/second or
bits/second, become inadequate. For example, offering
throughput guarantees in request/second, irrespective of

uarantees. These

cyhong@illinois.edu

ABSTRACT

Microsoft Research
Cambridge, UK

Chi-Yao Hong Matthew Caesar

caesar@illinois.edu

Finishing Flows Quickly with Preemptive Scheduling

P. Brighten Godfrey
uliuc
pbg@illinois.edu

Homa: A Receiver-Driven Low-Latency
Transport Protocol Using Network Priorities

Behnam Montazeri, Yilong Li, Mohammad Alizadeh”, and John Ousterhout

Stanford University, "MIT

pecially for workloads with ~ network loads.

. and it also supports large:
tion. Homa uses in-network POrt protocols

network util

these conditions, so the latency they provide for short m
ais a new transport protocol for datacenter networks. Itpro- 18 far higher than the hardware potential, particul
vides exceptionally low laten
ahigh volume of very short mess: Recent years hay
ncludin

y under hig

numerous proposals for better trans-
iprovements to TCP [2,3, 31] and

yeQ: Practical Network Performance Isolation at the Edge

Vimalkumar Jeyakumar!, Mohammad Alizadeh!, David Maziéres', Balaji Prabhakar',
Changhoon Kim?, and Albert Greenberg®

!Stanford University

Abstract

The datacenter network is shared among untrusted ten-
ants in a public cloud, and hundreds of services in a
private cloud. Today we lack fine-grained control over
network bandwidth partitioning across tenants. In this
paper we present EyeQ, a simple and practical system
that provides tenants with bandwidth guarantees as if
their endpoints were connected to a dedicated switch.
To realize this goal, EyeQ leverages the high bisection
bandwidth in a datacenter fabric and enforces admission
control on traffic, regardless of the tenant transport pro-
tocol. We show that this pushes bandwidth contention
to the network’s edge, enabling EyeQ to support end-
to-end minimum bandwidth guarantees to tenant end-
points in a simple and scalable manner at the servers.
EyeQ requires no changes to applications and is deploy-
able with support from the network available today. We
evaluate EyeQ with an efficient software implementation
at 10Gb/s speeds using unmodified applications and ad-
versarial traffic patterns. Our evaluation demonstrates

27
“Insieme Networks

3 Windows Azure

Cloud” [1] with their IP addresses without interfering
with other tenants. In the data plane, there has been little
comparable progress

To make comparable progress, we posit that the
provider should present a simple performance abstrac-
tion of a dedicated switch connecting a tenant’s end-
points [3], independent of the underlying physical topol-
ogy. The endpoints may be anywhere in the datacenter,
but a tenant should be able to attain full line rate for any
traffic pattern between its endpoints, constrained only by
endpoint capacities. Bandwidth assurances to this tenant
should suffer no negative impact from the behavior and
churn of other tenants in the datacenter. This abstraction
has been a consistent ask of enterprise customers consid-
ering moving to the cloud, as the enterprise mission de-
‘mands a high degree of infrastructure predictability [4].

Is this abstraction realizable? EyeQ described in this
paper attempts to deliver this abstraction for every ten-
ant. This requires three key components of which EyeQ
provides the final missing piece

Scheduler Implementation

» Hardware schedulers in ASICs, FPGAs, or NPUs [T~ &=sss =

E}:mmm

* Preprogrammed policies in switches or NICs

* Programmable schedulers

e Software schedulers at end hosts or middleboxes
» Kernel Queuing Disciplines (Qdiscs)

* Userspace networking stacks /@) DPDK

9

Software vs Hardware

 Hardware lags behind network needs / :
B

o Software serves as a good experimental s
environment before hardware deployment

5
» Software provides a “build once, deploy many” </>{"“’“"e'°°x

5

10 End host

Challenges of Network Scheduling

Bursty Paced
Rate, Rate,
e Accurate scheduling TMNMN0 =~
Time Time

o Efficient CPU and memory implementation oflegin) =—>> o(1)

Hierarchical Weighted
Fair Queuing

¢ Diversity of reqUirementS Strict Priority Rate Limiting

Shortest Remaining
Time First

11

Objective: Design an accurate,
efficient, and programmable
software scheduler

Outline

Eiffel Overview

Characteristics of Packet Ranks

Efficient Packet Ordering: Integer Priority Queues
Scheduler Programmabillity

Evaluation

13

Eiffel Overview

Scheduling
Policy Desc.

Scheduler
Controller

ibueuing Data

» | 1 Structure

_8 |

© :

o EPEnqueue

- - '
c | ! ‘ '.
< o y

14

Scheduling

Eiffel Overview | se
Policy Desc.

Scheduler
Controller

ibueuing Data
. Structure

-: Enqueue

Annotator

i
—

* Efficient building block for packet sorting operating at line rate

* EXpressive abstraction that can capture a wide range of policies

15

Characteristics of Packet

Ranks

 Packet carry limited precision integer
priorities of width w bits

Ranks are Integers

* Qo0S-based priority

 [ime-based priority

Flow size-based priority

17

TCP header format

32 bits

- source port

YYYYYY J L) L L3 R L) L) L2

destination port

sequence number

acknowledgement number

Hlen

U
reserved R

é'éTé?F. ind
KIHITININ vwnow

checksum

urgent pointer

[options]

Ranks have Known Ranges

Values of

 Semantics of priority values typical have limited Interest
ranges within the whole range of integer =
representation

 Time-based priorities: from now to a few seconds in
the future

 Flow size-based priorities: values are known from
typical application behavior

o Strict priority ranges: policy/network operator defined

18

Packets are Processed In Batches

Application

Application
Processing Speed

Network Processing

60B packet every 24 ns
1500B packet every 600 ns

NIC (20Gbps)

21

Packets are Processed In Batches

Application

Application

Processing Speed Processing delay

Is In 100s of ns
Network Processing

60B packet every 24 ns
1500B packet every 600 ns

NIC (20Gbps)

22

Packets are Processed In Batches

Application

Application

Packets have to be processed in batches, rendering all
packets in a batch to have virtually the same rank

\ A4 4 P“Vl\\l‘ w W Wwi ’ =T 11w

1500B packet every 600 ns

23

Eiffel Building Block

Bucketed Data N Limited number N Algorithm to find min/max
Structure of buckets non-empty bucket

= Integer Priority Queues

27

Efficient Packet Ordering:

Integer Priority Queues

Priority Queues 101

Binary trees, Binomial Heap, Fibonacci Heap @
Support ExtractMin/ExtractMax @ @
Overhead of O(log n) on insertion or @ e @ o

extraction e o

Requires definition of a comparison operator:
Comparison-based Priority Queues

29

Integer Priority Queue

Bucketed queues of N buckets

Bucket index is the priority of LI LI LI LI LI
elements in the bucket

O(1) insertion and change priority mn!!m

O(Log,, N) ExtractMin/ExtractMax

30

Integer Priority Queue

Packets have known priority range and can
be grouped into coarse granularity buckets

| |=={i|=
PP] [P

Packets have integer priority are
captured in limited precision integers

31

FFS-based Integer Priority Queue

Count Leading Zeros Count Trailing Zeros
EEEEE——

0001 1111 ... 1111 1100 0000
h h

Find Highest Set Find First Set

Count Leading Ones Count Trailing Ones
N

Wgoooooo. . .ooooo% 1111111

Find Highest Zero Find First Zero

32

FFS-based Integer Priority Queue

* FindFirstSet (FFS) in a 64-bit word in 3 CPU cycles

 Every bucket is represented by a bit
e Bitis set iff bucket is not empty 0002} 1111 ... 111 12}00 0000

e O(1) Integer Priority Queue in for N=64 ——
 Linux Real Time Process Scheduler 1112000000---00000%1111111
e Quick Fair Queuing (QFQ)

[F. Checconi et al. INFOCOM ’13]

33

Hierarchical FFS-based Queue

Packets
0 1 2 3 4 5 Queue
1 0 0 0 1 1
/“ — Bitmap
] 1 0 1 0 Meta Data
eaf <
Root - - 1 1

Circular Hierarchical FFS-based Queue

Primary Secondary
| | | | | Packets
242 | 243 | 244 [245 | 246 | 247 248 | 249 | 250 | 251 | 252 | 253 Queue
0 0 0 1 1 1 1 0 0 0 0 0
\o \1 T \1 \o ST o |Bitmap
— — Meta Data
1 1 1 0

39

Circular Hierarchical FFS-based Queue

Primary

Secondary

242

243

244

245

246

247

2438

249

250

2

51 | 25

2

253

Packets

Queue

cFFS-based queues has a small memory footprint and requires
O(log,, N) steps for ExtractMin operating over a small N

36

Scheduler Programmability

PIFO Programming Model

e Eiffel extends Push In First Out (PIFO) model

 PIFO model capture hierarchical policies using tress of
priority queues [Sivaraman et. al SIGCOMM ’16]

 Packet ranking is performed on enqueue
o Scheduling and shaping are tightly coupled in a single transaction

 |Implemented in hardware through parallel comparisons

33

Eiffel Programming Model

e Eiffel model extends the PIFO model

 Packets can be ordered based on flow ranking
 Flows and packets can be ranked on engueue and dequeue

 Shaping and scheduling are decoupled for efficiency

39

Eiffel Example: pFabric

 Each packet is tagged with Remaining
Processing Time

e Packets are transmitted with Shortest
Remaining Processing Time First (SRPTF)

* To avoid starvation, earliest packet from
the highest priority flow is transmitted

» pFabric requires prioritizing flows based
on ranks of packets

40

Eiffel Example: pFabric

 Each packet is tagged with Remaining
Processing Time H

e Packets are transmitted with Shortest
Remaining Processing Time First (SRPTF)

* To avoid starvation, earliest packet from
the highest priority flow is transmitted

» pFabric requires prioritizing flows based
on ranks of packets

40

Eiffel Example: pFabric

 Each packet is tagged with Remaining
Processing Time

e Packets are transmitted with Shortest
Remaining Processing Time First (SRPTF)

* To avoid starvation, earliest packet from
the highest priority flow is transmitted

» pFabric requires prioritizing flows based
on ranks of packets

40

Eiffel Example: Implementation

Rank 80 Rank 60

e Data structures
* Priority Queue per policy that ranks flows “ “

100 100

 FIFO queue per-flow

 On packet enqueue

 Check packet tag and update flow rank ‘ \ ‘ \ ‘ \
e Update flow position in priority queue

41

Eiffel Example: Implementation

Rank 40 Rank 60

e Data structures |—|
* Priority Queue per policy that ranks flows
 FIFO queue per-flow

 On packet enqueue
» Check packet tag and update flow rank LI LI

e Update flow position in priority queue

41

Eiffel Example: Implementation

Rank 40 Rank 60

e Data structures “

* Priority Queue per policy that ranks flows “
 FIFO queue per-flow m

 On packet enqueue

 Check packet tag and update flow rank ‘ H \ ‘ \
e Update flow position in priority queue

41

Evaluation

Evaluation Setup

FlowGen Measurements

Two servers with Intel X520-SR2 dual !

port NICs

A

10 Gbps ﬁ

<>

Eiffel implemented in Berkeley
Extensible Software Switch (BESS)

BESS runs on a single dedicated core

Traffic generated using BESS
FlowGen with varying number of
flows and fixed 1500B packets

43

10000
2@ 8000
S 6000
= 4000

Evaluation

bFabric - Eiffel
_prabric - Binary Heap —+—

100 1000

10000 100000

Number of flows

44

1x1O6

Evaluation

10000
3 8000

g 6000

= 4000 - * pFabric - Eiffel ‘
g <% pFabric-Binary Heap ——
* 100 1000 10000 100000

Number of flows

1x1O6

Eiffel improves capacity by 5x in terms of number of flows
that can be handled at line rate

Conclusion

» Eiffel network operators to deploy complex scheduling
policies at end hosts and middle boxes

o Eiffel advantages make a strong case for rethinking the
building blocks of packet in scheduling in hardware

46

Questions?

