
zD: A Scalable Zero-Drop Network Stack at End Hosts
Yimeng Zhao

Georgia Institute of Technology

Ahmed Saeed

Massachusetts Institute of Technology

Ellen Zegura

Georgia Institute of Technology

Mostafa Ammar

Georgia Institute of Technology

ABSTRACT
Modern end-host network stacks have to handle traffic from tens

of thousands of flows and hundreds of virtual machines per single

host, to keep up with the scale of modern clouds. This can cause

congestion for traffic egressing from the end host. The effects of this

congestion have received little attention. Currently, an overflowing

queue, like a kernel queuing discipline, will drop incoming packets.

Packet drops lead to worse network and CPU performance by inflat-

ing the time to transmit the packet as well as spending extra effort

on retansmissions. In this paper, we show that current end-host

mechanisms can lead to high CPU utilization, high tail latency, and

low throughput in cases of congestion of egress traffic within the

end host. We present zD, a framework for applying backpressure

from a congested queue to traffic sources at end hosts that can scale

to thousands of flows. We implement zD to apply backpressure

in two settings: i) between TCP sources and kernel queuing disci-

pline, and ii) between VMs as traffic sources and kernel queuing

discipline in the hypervisor. zD improves throughput by up to 60%,

and improves tail RTT by at least 10x at high loads, compared to

standard kernel implementation.

CCS CONCEPTS
• Networks → Network architectures; • Software and its en-
gineering→ Communications management.

KEYWORDS
Network Architecture, Backpressure, Queuing Architecture, Con-

gestion Control

ACM Reference Format:
Yimeng Zhao, Ahmed Saeed, Ellen Zegura, and Mostafa Ammar. 2019. zD:

A Scalable Zero-Drop Network Stack at End Hosts. In The 15th International
Conference on emerging Networking EXperiments and Technologies (CoNEXT
’19), December 9–12, 2019, Orlando, FL, USA. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3359989.3365425

1 INTRODUCTION
For years, improved chips added more cores rather than more ca-

pacity per core [34]. Rather than relying on improved performance

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6998-5/19/12. . . $15.00

https://doi.org/10.1145/3359989.3365425

Src 1 Src 2 Src N...Traffic Sources

Source 
Buffers

Scheduled 
Buffers

To Lower Layer 
or NIC

Consumes packets from sources 
and outputs them according to 

scheduling policy; when 
overflowing, drops packets. 

Figure 1: Schematic of queue architecture at end hosts.

through increased per-core performance, parallel execution be-

came the only way of making use of the new chips [4, 15]. From the

perspective of the networking stack, this meant that rather than

having to serve a few connections per machine, new networking

stacks have to cope with requirements in the tens of thousands

of connections per machine (e.g., reports mention servers han-

dling up to 50k flows per end host [28]). This is further enabled by

advancements in virtualization and containerization that allows ap-

plications belonging to different users to coexist and share network

resources on the same end host (e.g., reports mention 120 VMs per

end host [23]). This scale sparked interest in improved scheduling

and prioritization between these applications through the intro-

duction of efficient packet processing and scheduling mechanisms

[1, 3, 23, 28, 29]. Processing of egress traffic in such stacks relies on

holding packets in a cascade of queues pending their processing

and eventual scheduling to be transmitted on the wire.

Packet queues at an end host serve as buffers between produc-

ers and consumers with different speeds. There are two types of

buffers we are interested in: source buffers and scheduled buffers.
Source buffers hold packets prepared by traffic sources while await-

ing consumption by the underlying layer in the stack. Scheduled
buffers consume packets from multiple traffic sources and then

determine the order of their transmission according to their config-

ured scheduling policy. While most components of the networking

stack have evolved to cope with the growing scale of applications,

handling of overflowing scheduled buffers which can lead to packet

drops has received little attention.

Figure 1 shows how packets flow in a typical system. Packets

are first sent from source buffers (e.g., TCP socket buffers) to a

scheduled buffer (e.g., Qdisc [7]). Packets from different sources

accumulate in the scheduled buffer. If a scheduled buffer runs out of

space, packets are dropped. Examples of such end-host congestion

exists in large scale public clouds where a single end host is shared

between multiple applications [14].

https://doi.org/10.1145/3359989.3365425
https://doi.org/10.1145/3359989.3365425


CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Yimeng Zhao, Ahmed Saeed, Ellen Zegura, and Mostafa Ammar

In general, packet drops are inefficient. Resources used on pro-

cessing the dropped packet (e.g., CPU) have to be used again to

send the retransmission.Moreover, drops increase latency by adding

more processing time to attempt retransmissions. Finally, drops

can also induce severe reaction from congestion control which cuts

its window in reaction to packet loss, leading to lowered through-

put. When packet drops occur inside the network, then this type

of inefficiency is unavoidable because of the need for end-to-end

signaling. However, if packets are dropped inside the source host

in the manner described in the scenario of Figure 1, then they can

be handled through signaling within the host. For this latter type

of loss we find that they are responsible for a up to 14% increase in

CPU utilization and an order of magnitude increase in tail latency

(§2). Our goal is to consider how signaling within the host can

recover from these packet drops faster (in nanoseconds to microsec-

onds as opposed to microseconds to milliseconds) while avoiding

the CPU overhead.

A few proposals attempt to avoid packet drops of egress traffic

at end hosts. However, their approaches have poor performance

when handling a large number of senders. For example, the simplest

approach is to increase the queue size which is a known cause of

bufferbloat [8]. TCP Small Queue (TSQ) is one attempt to partially

address this problem by limiting the number of packets per TCP

socket to two packets [12]. This approach requires having O(N )
queue size at the end host, where N is the number of senders. TSQ

works well for cases where N is between hundreds to a couple of

thousands of flows. However, as N grows, TSQ can still suffer from

bufferbloat issues as the number of packets in the queue grows

(§2.3). Delayed-completion [28] was proposed as an approach to

leverage the benefits of TSQ outside the scope of the kernel stack

(e.g., in a userspace stack [1]). However, this approach inherits

TSQ’s scalability problem (i.e., requiring O(N ) queue size).
In this paper, we introduce the design, implementation, and

evaluation of zD, a new architecture for handling congestion of

scheduled buffers. zD has three components (§3): 1) a source buffer

regulator that allows a congested scheduled buffer to pause and

resume a traffic source, ii) a CPU efficient backpressure interface to

define the interaction between the congested scheduled buffer and

the traffic sources, and iii) a scheduler for paused flows to make sure

that zD does not interfere with the scheduling policy implemented

in the scheduled buffer. zD allows network operators to set a fixed

queue size that is independent of the number of flows, eliminating

bufferbloat issues at scale. zD maintains CPU efficiency by defining

a backpressure interface that triggers packet dispatch from senders

only when the scheduled buffer has room for new packets
1
. The

task performed by zD can be viewed as controlling access to the

scheduled buffer rather than leaving it the CPU scheduler. Thus, zD

also reduces contention in accessing the scheduled buffer, further

saving CPU resources. zD avoids interfering with the scheduling

policy implemented in the packet queue (e.g., Qdisc policy) by

scheduling flows in a way that is consistent with the underlying

packet scheduling policy. To achieve CPU efficient scheduling, zD

leverages recent developments in software schedulers introduced

by the Eiffel system [29].

1
Note that drops due to packet corruption can still happen.

VM userspace

VM kernel

Application

TCP 

Qdisc 
Queue

vNIC TX 
Queue

Physical host
TUN-TAP 

Bridge

Qdisc 
Queue

NIC TX 
Queue

Socket 
buffer

Vhost-net 

Push

Feedback (start/stop 
pushing)

Pull (by interrupts)

Figure 2: Architecture of queues in end hosts.

We implement zD
2
(§5) in the Linux kernel to handle backpres-

sure for two cases: 1) when the queues and traffic sources are within

the kernel stack (i.e., in the same virtual or physical machine), and

2) when the traffic sources are in the virtual machine and the queues

are in the hypervisor. We find that zD can significantly improve

network performance at high loads (§6). In particular, zD improves

throughput by up to 60%, reduces retansmission by up to 1000x,

and improves tail RTT by at least 10x at high loads. Furthermore,

zD improves CPU utilization spent on the networking stack by up

to 2x at the end host by reducing the effort spent on resending

packets that have been dropped. We also find that zD is lightweight

as it does not incur extra overhead when the system is operating at

low utilization. The only downside to zD is that in some scenarios

it can increase the CPU overhead inside the hypervisor.

2 BACKGROUND AND MOTIVATION
2.1 Packet Queuing at End Hosts
We start by giving an overview of the packet queuing architecture

at end hosts. We focus on a common architecture used in modern

data centers. In particular, we focus on the case where the end host

is running a Linux virtualized environment, where the IO driver

interface between the guest and host is handled by virtio [27]

and vhost [33]. virtio is an I/O para-virtualized (PV) standard

used for connecting the guest and host. To avoid context switching

in the host, vhost allows the dataplane of the guest to be mapped

directly into the kernel space of the host. The queuing architecture

is shown in Figure 2. We focus on queues in the packet path and

differentiate between queues where it is possible to have packet

drops and those that already have a form of backpressure.

The user space application in the VM generates a packet and

copies it into the kernel space socket buffer. The return value of the

socket system call indicates whether the socket buffer is full. This

operation is lossless (i.e., zero drop). Packets from the socket buffer

are then queued into a Queuing Discipline (Qdisc). Packet drops

can happen if the Qdisc is full. This happens when sockets push

packets faster than the Qdisc transmission speed. Next, the Qdisc

2
zD Code and a tutorial for using it are available at https://zd-linux.github.io/

https://zd-linux.github.io/


zD: A Scalable Zero-Drop Network Stack at End Hosts CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

sends the packet to the vNIC TX queue. The vNIC TX queue does

not drop packets. In particular, when there is no available space in

the vNIC TX queue, the Qdisc will be paused until the queue length

drops below the threshold, making the Qdisc the primary location

for drops in the VM.

The hypervisor processes packets generated by the VM through

vhost which starts a kernel thread that performs busy polling

on the queue between the hypervisor and the VM. There can be

multiple such queues, called vrings with a different vhost thread
assigned for each vring. The vhost process polls the packet and
sends it through the TAP device then to a Bridge device. Packets

received in the virtual bridge will be forwarded to the Qdisc in

the physical machine and then transmitted to the NIC TX queue.

Note that in this setting, the TAP and Bridge devices do not hold

or drop packets, delivering all packets they process in order to the

Qdisc in the hypervisor. The Qdisc, or its counter part in a more

complicated architecture (e.g., OpenVSwitch [24]), is the main place

where packets can be dropped due to congestion in the hypvervisor.

We mark the existing backpressure mechanism (i.e., zero drop) with

solid red arrows in Figure 2.

We choose this setting because it is a stripped-down, yet general-

purpose, virtualized network stack. This architecture shares the

same queuing components with more complicated architectures.

For instance, consider Andromeda [14], Google’s virtual network

stack. Andromeda relies on a similar basic architecture and aug-

ments it with an efficient fast path. Note that packet drops can only

happen at Andromeda itself which corresponds to the Qdisc in

the above architecture. Furthermore, the architecture we consider

here, unlike DPDK-based stacks, does not require a spinning core

dedicated for network processing. This allows us to perform fine

grain measurements of CPU efficiency (e.g., experiments where the

VM runs on a single core). This architecture also captures the major

characteristics of other stacks in terms of potential for packet drops

at the end host. For instance, vhost used in our architecture has an

analogous vhost-user used in DPDK-based stacks where packet

queues will be in the userspace network processing system. In

cases where OpenVSwitch [24] is used, the TAP and Bridge devices

are replaced by OpenVSwitch. Hence, we find that the conceptual

building blocks we develop in this paper for solving the congestion

problem apply to other settings.

Ingress traffic:Most packet drops of egress traffic can be han-

dled by coordination within the sender. However, drops of ingress

traffic can require end-to-end coordination [9, 17] or careful alloca-

tion of CPU resources [22]. We focus on packet drops that occur

due to congestion that can be handled through signaling within the

end host, which are mostly egress traffic packet drops.

2.2 Types of Packet Drops
In-network packet drops are easily defined as packets being dis-

carded by a network element (e.g., switch). This singular definition

typically has some well defined reaction from the source associ-

ated with it (e.g., retransmission of the lost packet and congestion

control reacting by adjusting its window). However, at end hosts

we find that there are two types of packet drops. Both types of

drops are expensive because a packet is processed for transmission,

destroyed, and a replacement packet has to be generated which

leads to higher CPU cost as well as higher latency. However, the

two types differ in the reaction of the traffic source.

Virtual Packet Drops: In such cases the traffic source is aware

that the packet was dropped at the end host. This type of drop is

only feasible when transmission through the stack is performed

through a series of nested function calls. The return value of these

functions indicates whether the packet was successfully transmitted

or dropped by one of these functions. If a packet is virtually dropped,

the caller becomes aware of the location of the drop, allowing it to

react appropriately. For instance, the reaction of TCP to a detected

virtual packet drop is to simply attempt to resend the dropped

packet without triggering its retransmission mechanisms and the

congestion control algorithms.

Physical Packet Drops: In such cases the traffic source is un-

aware that the drop happened at the end host and consequently

reacts as if the packet was dropped in the network. For example,

the reaction of TCP to a physical packet drop will include trigger-

ing retransmission and congestion control algorithms. This type of

drop is more expensive as it can lead to reduced network utilization,

due to congestion control reaction (i.e., forcing flows to operate at

a low rate), in addition to the higher CPU cost and latency.

In the stack described in Figure 2, virtual packet drops happen

inside the VM where the TCP stack is aware of Qdisc packet drops.

In current implementations, TCP reacts to virtual packet drops

by immediately attempting to resend the dropped packet without

consideration to contention at the Qdisc. This is a CPU intensive

approach as we discuss in the next section. Physical packet drops

occur in the hypervisor Qdisc which does not explicitly report

drops to the guest kernel. Another important distinction between

the two types of drops is that physical packet drops can be com-

pletely avoided. However, virtual packet drops are necessary in

some cases. For example, a new flow cannot know whether the

queue is full or not until it probes the queue with a packet that can

be virtually dropped. Hence, the goal of a backpressure mechanism

is to minimize virtual packet drops and eliminate physical packet

drops.

2.3 Cost of Long Queues
A naive approach to avoid loss in queues is to increase the queue

size. Increasing the queue size exhibits fundamental limitation in

accommodating the increasing number of concurrent connections,

despite TCP Small Queue which attempts to combat bufferbloat

[12]. To highlight these limitations, we conduct a simple experiment

within a VM, running a large number of TCP connections using

different lengths for the queue used in the VM Qdisc. In particular,

we use neper [2] to generate 4000 TCP flows. The flows run in a

VM. Queue accumulation only happens in the guest by setting a

large rate for the VM in a queue not contended by any other VMs.

We use the pfifo Qdisc [19] in the guest kernel with different

queue lengths, aiming at examining behavior in two cases: 1) TSQ

operation point where no packets are dropped (i.e., 2 packets are

enqueued per flow), leading to a queue length of 8k slots, and

2) a queue length of 1k slots representing queue sizes that avoid

bufferbloat. We also compare using the two cases to zD to highlight

potential improvements. More details about our experimental setup

is presented in Section 6.1.



CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Yimeng Zhao, Ahmed Saeed, Ellen Zegura, and Mostafa Ammar

10-510-410-310-210-1 100 101

Time (s)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F pfifo 1k

pfifo 8k
zD

(a) CDF of RTT

10-310-210-1 100 101 102 103
Time (s)

0.80

0.85

0.90

0.95

1.00

CD
F 
(%

)

pfifo 1k
pfifo 8k
zD

(b) Zoomed in CDF of RTT

Figure 3: Bufferbloat, when pfifo queue size is 8k slots, leads
to two orders of magnitude degradation in RTT. High con-
tention and virtual packet drop rates, when pfifio queue size
is 1k slots, leads to an order ofmagnitude degradation in tail
latency compared to zD.

We find that longer queue length leads to longer RTT, implying

that relying on TSQ leads to performance degradation as the number

of flows grows. Figure 3a compares the RTT of TCP flows with a

pfifo queue with two queue length values. The result shows that

excess buffering in a long queue increases latency as well as causing

packet delay variation (long tail in Figure 3b). We also repeat the

experiment with Fair Queue (FQ) Qdisc [13] and observes that FQ

has similar RTT as pfifo for a queue size of 8k slots. This behavior

occurs despite FQ attempting to reduce the variance in RTT using

round robin scheduling of active flows.

2.4 Cost of Packet Drops
We characterize the cost of packet drops in terms of both CPU

utilization as well as tail latency. We find that both metrics are

interconnected with a negative feedback loop where high CPU

cost leads to high tail latency, which in turns increases the CPU

cost further. In this section, we explain in detail the causes of this

peculiar behavior. We examine packet queues in the same setting

as the previous section (i.e., flows started inside a VM). This allows

us to examine CPU cost inside the stacks of both guest and host

kernels. To illustrate these costs, we contrast the performance of

the standard Linux implementation to our proposed system zD,

which does not suffer from the same issues. We use zD simply to

illustrate the inefficiency of the current approach used in the Linux

kernel, explaining its details in subsequent sections.

CPU Cost: The CPU cost of packet queuing in the guest ker-

nel is caused by the contention between TCP flows competing to

acquire Qdisc lock and fill its limited space. This CPU overhead

is a well documented issue [26, 28]. This overhead is exacerbated

in cases where virtual or physical packet drops occur. In particu-

lar, a flow competes to acquire a lock to the Qdisc only to have it

dropped, forcing the flow to try to acquire the lock again for the

same packet. This overhead is shown in Figure 4a. The CPU cost

in the host kernel is similar to that of the guest kernel in terms

of contention to acquire Qdisc lock between multiple VMs. Fur-

thermore, the hypervisor runs a vhost thread per vring to process
traffic generated by the VM. The CPU utilization of vhost-net
threads grows as the number of packets generated by a VM grows.

In our experiments, we have a single vring per VM. We find that

avoiding packet drops and contention also reduces CPU cost of the

vhost-net thread (Figure 4b), recorded by pinning the thread to a

specific core and measuring the utilization of that core. In order to

20 25 30 35 40 45 50
CPU (%)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F 
(%

)

TSQ
zD

(a) CPU usage in VM

0 20 40 60 80 100
CPU (%)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F 
(%

)

TSQ
zD

(b) CPU usage of vhost

Figure 4: zD reduces CPU usage in both VM and the physical
machine compared to standard kernel implementation for
TSQ (pfifo).

explain this behavior, we first examine the cost of packet drops on

tail latency.

Latency Cost: Packet drops, in addition to time wasted on lock

contention, cause delays to packet transmission. In particular, a

packet has to successfully acquire the lock to the queue, and find

room in the queue, in order to be transmitted. Otherwise, the packet

is dropped, either physically or virtually, and forced to reattempt the

process. This is clear in comparing zD, which avoids the mentioned

overhead, and standard kernel implementation with 1k slots, shown

in Figure 3. In particular, the impact of bufferbloat explains the

behavior of the case when a queue size of 8k is used. However, the

improvements in tail latency provided by zD compared to standard

kernel implementation with 1k slots are explained by reducing

contention as well as avoiding packet drops.

Impact of RTT tail performance on vhost-net CPU: This
strange interaction is an artifact of years of optimization of the

TCP stack yielding unexpected scenarios. These optimizations are

summarized in [10]. We note that all optimizations wemention here

are enabled by default in the Linux kernel stack. They start with

TCP Segmentation Offload (TSO), a mechanism to achieve low CPU

utilization at high networking speed by offloading TCP segmenta-

tion to hardware. However, TSO, with fixed segment size, may lead

to microbursts for flows with low rate, which is not desirable in

networks relying on merchant silicon switches with short buffers.

Here lies a tradeoff between CPU and network performance; relying

on large fixed segment size saves host CPU but results in a bursty

network and using small segment sizes increases CPU cost, through

processing of more packets, but yields better network performance.

The current approach used in Linux attempts a compromise by

automatically determining the size of TSO segments based on the

transmission rate.

TSO autosizing was introduced to decide the size of data in a

burst [13]. The goal of TSO autosizing is regulating the number

of packets transmitted by any single TCP flow by changing the

TSO size, and consequently reducing the burst size of the TCP

flow. In particular, TSO autosizing aims at making TCP flows send

a packet every millisecond rather than a hundred packets every

100 milliseconds. The algorithm calculating TSO size relies on an

estimate of the rate of the flow calculated as 2 × cwnd/RTT , where
cwnd is the congestion window size and RTT is a moving average

of the measured RTT value in the kernel. This means that a long

tailed RTT distribution leads to a smaller pacing rate, which means

the data will be chunked into smaller size. This leads to higher

CPU cost at the vhost-net thread, as shown in Figure 4b. A CDF



zD: A Scalable Zero-Drop Network Stack at End Hosts CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

0 20000 40000
Frame size

0.0
0.2
0.4
0.6
0.8
1.0

CD
F 
(%

)

TSQ
zD

Figure 5: CDF of frame size, showing the impact of tail RTT
performance on the behavior of TSO autosizing algorithm.
Larger tail latency yields smaller packets, causing higher
CPU cost.

of packet sizes under standard kernel implementation and zD is

shown in Figure 5, where the difference between packet sizes can

be explained by the difference in tail RTT shown in Figure 3. Note

that when the CPU utilization of the core handling the vhost-net
reaches 100%, the latency faced by packet can increase, further

impacting packet sizes, leading to a negative feedback loop of bad

performance.

2.5 Related Work
Egress path congestion: TCP Small Queue (TSQ) [12] is the most

prominent backpressure mechanism in practice today, which we

have already thoroughly discussed. TSQ relies on signaling within

the kernel stack to maintain the per-flow limit. More recent propos-

als extend TSQ signalling to enforce the per-flow limit to queues

beyond the kernel stack. Carousel employs delayed delivery of com-

pletion signal from the NIC to the TCP stack to apply backpressure

from a userspace network processor to the kernel TCP stack [28].

While traditional completion is implemented as a signal from dri-

ver to transport stack in the same order of packets arriving at the

NIC, asking the transport stack to send more packets, Carousel

implements out-of-order completions and relies on TSQ to limit the

number of packets per flow. PicNIC [18] extends TSQ signalling to

allow backpressure from a hypervisor to traffic sources inside a VM.

It also proposes a per VM budget of packets, for cases when a VM

doesn’t support the backpressure signal. Note that Carousel and

PicNIC exhibit the inherent TSQ issues discussed earlier as queues

have to accommodate O(N ) packets for N flows. zD removes that
relationship between the number of active flows and queue size. In
particular, zD allows for setting a small queue size, handling a large
number of flows without causing any packet drops. End host queue

buildup can be handed in a similar manner to in-network queue

buildup through congestion control algorithms [16]. This approach

does not eliminate packet drops but helps improve tail latency.

Queue overflow is not the only cause of congestion on the egress

path. Another cause of congestion is exhausting CPU resources.

Several systems proposed improve the CPU efficiency of queuing

in the network stack, thus allowing it to handle more packets and

flows. SENIC [26] improves rate limiting scalability by allowing for

software queues to make use of hardware to improve rate limiting

performance. Carousel [28] employs a time-based marking of pack-

ets and the timing wheel data structure to improve the performance

of software-only rate limiting. Eiffel [29] presents a software only

solution for general purpose packet scheduling. Several proposals

explore improving efficiency of scheduling algorithms by offloading

them to hardware [30, 31].

Ingress path congestion: In this paper, we focus on perform-

ing backpressure on egress traffic at the end host. Recently several

proposals have looked at congestion control of the ingress path,

implementing scalable networking stacks [22, 25] and enforcing iso-

lation between receiving flows [14, 18]. Ingress path congestion at

the end host occurs when one receiver (e.g., VM or socket) receives

packets at a high rate so that it overwhelms the CPU at the receiver.

Congestion control of ingress traffic typically requires fine grain

CPU scheduling to allocate enough resources to process incoming

packets for all receivers. Congestion can also happen due to incast

scenarios when ingress traffic demand exceeds the NIC capacity at

receiver. Resolving incast issues in datacenter networks has been

an active area of congestion control research [5, 20, 21, 35].

3 zD DESIGN PRINCIPLES
Packet drops are caused by demand exceeding capacity. This means

that traffic sources will get less bandwidth than their demand. The

only solution to this problem is to change capacity or demand.

However, congestion control aims at optimizing reaction to such

scenarios. Hence, the overarching goal of zD is to change the indi-

cator of congestion at end hosts from packet drops, and to conse-

quently achieve less throughput than demand, lowering throughput

without drops. This avoids sending an ambiguous signal, that does

not differentiate between end-host drops and in-network drops. It

also allows for better CPU and network performance as discussed

earlier. This high level goal has to be achieved in tandem with the

following objectives:

• Prevent drops due to scheduled buffer overflows: This is the
main objective of zD. As discussed in the previous section, packet

drops lead to poor network and CPU performance. zD allows

overflowing queues to apply backpressure to traffic sources to

prevent them from enqueuing more packets.

• Maintain CPU efficiency: Preventing drops can lead to cases

where the traffic sources are constantly busy polling on avail-

able slots in the queue. This behavior trades CPU efficiency for

network efficiency. zD avoids this type of behavior.

• Maintain consistencywith packet scheduling policies:Back-
pressure is a form of controlling access to a congested scheduled

buffer. zD should avoid scenarios where its coordination of access

to the queue conflicts with the scheduling algorithm performed

by the queue itself. An example of such conflict is an overflowing

queue that has room for low priority traffic and no room for

high priority traffic. zD ensures that only high priority packets

get enqueued by applying backpressure to flows in a way corre-

sponding to the scheduling algorithm of the queue which can be

configured when the scheduled buffer is configured.

We find that these objectives can be achieved through a struc-

turing of the queuing architecture at end hosts that implements the

following mechanisms (Figure 6):

1. Source Buffer Regulator (§4.1): The source buffer should keep
a copy of packets still being processed by the networking stack

until it is fully transmitted. The source buffer should also support

an interface that allows the underlying stack to pause and resume



CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Yimeng Zhao, Ahmed Saeed, Ellen Zegura, and Mostafa Ammar

Src 1 Src 2 Src N...Traffic Sources

Source 
Buffers

Scheduled 
Buffers

To Lower Layer 
or NIC

Backpressure Interface

Probe

Resume/
Pause

Paused-Flows
Queue

Regulator

Figure 6: Schematic of zD architecture at end hosts.

transmission of packets from that buffer (e.g., TSQ). This augmen-

tation of source buffers allows for avoiding physical packet drops

by always retaining a copy of dispatched packets till they are actu-

ally consumed. It also provides an interface for the backpressure

mechanism to pause and resume packet dispatch.

2. Backpressure Interface (§4.2): To eliminate physical drops,

packet queues should be able to pause senders when they are full.

Furthermore, senders should be able to probe for room in the queues.

Such interaction between the packet queues and senders should

be well defined through a backpressure interface. Furthermore, it

should be CPU efficient, to avoid CPU being the bottleneck of the

networking stack.

3. Paused-Flows Queue (§4.3): Backpressure should be applied in
a way that does not change the intended scheduling behavior of the

packet queue. Hence, zD schedules access to the packet queue by

keeping paused flows in a queue that is sorted in a way consistent

with that of the underlying packet scheduling policy.

The design of zD and TSQ share the regulator. Both zD and TSQ

employ a mechanism that pauses and resumes source buffers. The

difference between zD and TSQ lies in how the pause and resume

decisions are made. In the case of TSQ, pause and resume decisions

are made by the source buffer. TSQ forces source buffers to maintain

a maximum of two dispatched packets per flow, leading to queue oc-

cupancy that grows as the number of active flows grow. This limits

the effectiveness of TSQ backpressure in handling bufferbloat as it

ignores the occupancy of the scheduled buffer. Furthermore, access

to the scheduled buffer becomes dependent on CPU scheduling

of sender buffers and their ability to gain the lock to the sched-

uled buffer. In the previous section, we show that these limitations

in TSQ lead to significant performance degradation. zD mitigates

these problems by extending the regulator as well as providing a

Backpressure Interface and a Paused-Flows Queue.

4 zD OVERVIEW
zD applies backpressure from packet queues, which can overflow

and drop packets, to source buffers from which packets are dis-

patched. It provides a layer between the sender buffer and the

scheduled buffer. Instead of continuously pushing packets into the

scheduled buffer only to drop them when the queue is full, zD adds

a set of additional steps in the path of a packet. First, a copy of the

packet is created to avoid physical packet drops. Then, the packet

copy is used to probe the packet queue to check if it has room, and

proceeds normally if the packet queue has empty slots. However, if

Algorithm 1 zD Flow Algorithm

1: procedure ProcessFlow(Flow F, Packet p, Queue q)

2: if F .pause then return //Reдulator
3: if !q.probe() then //Backpressure Inter f ace
4: F .pause ← true //Reдulate
5: PausedFlowsQ .append(F )
6: else
7: if !F .sendTwo() or PausedFlowsQ .empty() then
8: enqueue(F, p)

9: else
10: F .pause ← true
11: PausedFlowsQ .append(F )

12: procedure ResumeFlow(Flow F)

13: F ← GQ .popFront()
14: F .pause ← f alse
15: F .resume()

the packet queue has no empty slots, the packet copy is dropped,

causing only a virtual packet drop. This is used as a backpressure

signal to the source buffer of that packet. The backpressure signal

pauses the backpressued flow and registers it with zD so that it

can be resumed when there is room for its packets. Figure 6 sum-

marizes modifications to the current queue architecture. The zD

logic is summarized in Algorithm 1. For the rest of this section, we

elaborate on each step described in this algorithm.

zD mechanisms can be applied to multiple settings where there

are source buffers and scheduled buffers. In this paper, we focus on

two such settings: 1) the TCP/IP kernel stack, where TCP buffers

are the source buffers and Qdisc is the scheduled buffer, and 2) the

hypervisor networking stack in the kernel, where the vrings of

the VM are the source buffer and the Qdisc is the scheduled buffer.

The details of our implementation of zD in these two settings are

presented in Section 5.

Memory overhead: zD has no data-plane memory overhead

except for the packets copies used to probe scheduled queue oc-

cupancy. Such packets copies are only copies of packet descriptor

which are commonly used for different purposes in networking

stacks. In our Linux implementation, we use one of the copies

already created by the kernel’s stack, incurring no exta memory

overhead. Backpressure keeps data in the application buffer thus

preventing the creation of new packets. The control plane overhead

of zD is limited to the Paused-Flows Queue that keeps a per-flow

descriptor. In our Linux implementation in a 64 bit machine, with

20k flows, the memory overhead is less than 160KB.

4.1 Source Buffer Regulator
This module has two functions: 1) define pause/resume operations,

and 2) keep a copy of the dispatched packet until its transmission

to the wire is confirmed. A flow can have two states “Active” and

“Paused”. The reaction of the stack to each state, and consequently

the implementation of pause/resume functions depend on whether

the stack is push-based or pull-based. In cases of a push-based stack

(e.g., TCP/IP kernel stack), marking a flow as “Paused” implies that

no further packets are pushed by that flow. New packets generated

by the application are queued in the source buffer. Once the flow is



zD: A Scalable Zero-Drop Network Stack at End Hosts CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

resumed (i.e., marked as “Active”), packets residing in the source

buffer are pushed to the lower layer. On the other hand, a pull-based

stack already has to sleep when it has no packet to process. We

follow a similar approach by forcing the pull-based stack to sleep

when it has no active flows. Note that a busy-polling stack on a

dedicated core (e.g., DPDK) does not need to sleep, making the

implementation of these functions a simple marking operation.

Like TSQ, zD keeps the number of packets enqueued by a single

flow to a maximum of two packets. Limiting the number of packets

per flow is necessary to avoid head of line blocking, where a single

flow enqueues a large number of packets in the queue, slowing other

flows. We found that further limiting to a single packet per flow

causes performance degradation. In particular, there can be a delay

between a flow becoming active and the processing of its packet.

In the case of push-based model, this delay is caused by the multi-

threaded nature of a push-based stack, where marking a flow as

“Active” does lead to the immediate dispatch of packet by that flow.

Typically, once a flow is marked as active a thread is started to kick-

start packet dispatch for that flow. This approach has a processing

delay associated with delaying the dispatch of packets. In the case of

a pull-based stack, marking a flow as “Active”might happen during a

sleep cycle. zD amortizes this delay over multiple packets bymaking

sure that an active flow has two packets pushed to the scheduled

buffer before it is paused again. Note that when a flow becomes

active, it has to check the number of its packets still in the scheduled

queue and make sure that it never exceeds two packets. We found

that this approach, and specifically limiting the number of packets

to only two, provides a good compromise between amortizing the

cost of pause/resume operations and unfairness (i.e., less than two

packets leads to under utilization and more than two pakcets leads

to head of line blocking and unfairness).

Unlike TSQ, the sender buffer regulator can pause a flow that

does not have less than two packets in the scheduled buffer. This is

critical in order to decouple the queue length from the number of

flows, avoiding bufferbloat scenarios in cases where there is large

number of flows.

4.2 Backpressure Interface
This interface defines the interaction between source buffers and the

scheduled buffer. In particular, it defines three operations: probe,
pause_flow, and resume_flow. probe informs the sender buffer

on whether it can push packets to the scheduled buffer. Scheduled

buffers with different scheduling policy should have different im-

plementation of probe function. For example, with the simplest

First-in-first-out (FIFO) queue, the probe function returns false

when the number of packets in the queue is equal to or larger than

the queue capacity and returns true otherwise. For more compli-

cated scheduling policies such as fair queue, the probe function

needs to classify the flow first and then checks whether the flow

exceeds its assigned share of the scheduled buffer.

If probe returns false, implying no room for that flow in the

scheduled queue, pause_flow is invoked. pause_flow marks the

flow as “Paused” triggering the logic of the sender buffer regulator.

It also adds the flow to the Paused-flows queue. When a sched-

uled buffer has room (i.e., a packet is transmitted), resume_flow
is invoked. resume_flow fetches the highest ranked flow in the

...

1

...

2

x ...
3

...

1

...

2

...

3

Sender 
Buffer

Scheduled 
Buffer

Enqueue
packet

Drop Enqueue
packet

Enqueue
packet

Pause
Paused-Flows 

Queue
Enqueue 

Flow

...

4

a. Resume flow

b. Enqueue
packet(a) Steps of Backpressure in TCP/IP Stack

...

1

...

2

x ...

3

...

1

...

2

...

3

Sender Buffer

Scheduled 
Buffer

Enqueue
packet

Drop Enqueue
packet

Enqueue
packet

Pause

Paused-Flows 
QueueEnqueue 

flow

...

4

a. Resume 
flow

b. Enqueue
packet

(b) Steps of Backpressure in zD

Figure 7: Illustration of different backpressure steps.

Paused-flows queue. Then, marks it as “Active”, trigger the resume

logic of the sender buffer regulator. Note that this logic is deadlock-

free.

The advantage of this interface is that a flow is only active if

either the scheduled buffer has room for packet or it is first attempt

of that flow to access a congested scheduled buffer. This is unlike

existing attempts where flows are always active causing either phys-

ical or virtual packet drops by continuously attempting to enqueue

packets to the scheduled buffer. Hence, the backpressure interface

improves both CPU and network performance by avoiding drops

as well as only doing work when useful. The difference between

the two approaches is summarized in Figure 7.

It should be noted that the granularity of the scheduled buffer de-

cides the granularity of Backpressure Interface. For example, in our

implementation of backpressure in the hypervisor, the backpressure

is performed per VM because packets lose flow-level information

when it passes through from the VM to the hypervisor. The Qdisc

in the physical machine treats all traffic from a VM as an aggregate

flow and probe API provides information at the granularity of VMs.

4.3 Paused-Flows Queue
The aforementioned building blocks rely the ability of zD to track

paused flows. This tracking function is performed by the Paused-

flows queue. The paused-flows queue is a global queue accessible

to all stack threads through a global lock. The order in which flows

are sorted within this global queue determines the overall sched-

uling policy for traffic going through the stack. zD implements a

library of Paused-Flows Queuing Disciplines that correspond to

the queuing disciplines implemented in the scheduled queue. The

network operator has to install a Paused-Flows Queuing Discipline

that corresponds to their chosen queuing discipline in the scheduled

queue. This operation can be simplified by a simple network utility

application. We note that the focus of our work on zD is managing

congestion due to queue overflow of packets. Hence, in this work



CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Yimeng Zhao, Ahmed Saeed, Ellen Zegura, and Mostafa Ammar

we implement only a small library of Paused-Flows Queuing Disci-

plines (i.e., FIFO and rate limiting disciplines). Complex queuing

disciplines can be implemented to extend the functionality of zD.

Efficient implementation of such disciplines is critical to avoid con-

gestion due to high CPU utilization. Such efficient implementation

is feasible relying on building blocks proposed in our earlier work

on efficient per-flow scheduling [29].

5 IMPLEMENTATION
We implement backpressure in two places: (1) the Linux TCP/IP

stack, and (2) the vHost stack in the Linux hypervisor stack. Our

implementation is based on Linux kernel 4.14.67, however it is not

restricted to that specific version. While the zD design described in

Section 4 can be generally applied to both cases, we focus on these

two settings as discussed earlier.

5.1 TCP/IP Stack Implementation
Implementing zD requires modifying the way that the TCP stack

interacts with the IP stack. We start by giving an overview of the

transmission path (Tx path) of the standard TCP/IP stack implemen-

tation in the kernel. In the TCP Tx path, data from the userspace

application is pushed into the Socket Buffer (skb) and all paths

of function calls end up calling tcp_write_xmit function regard-

less of whether the TCP socket is sending a packet for the first

time or is retransmitting a packet. In the tcp_transmit_skb func-

tion, each skb is cloned so that TCP can always keep a copy of

the original data until the packet is ACKed by the receiver. The

tcp_transmit_skb function calls dev_xmit_skb, which tries to

queue the packet into the corresponding Qdisc (i.e., the scheduled

buffer). If the Qdisc queue is full, the skb will be virtually dropped.

In particular, the pointer to the next packet to send, sk_send_head,
will not be advanced.

Under the standard kernel implementation, when an skb is vir-
tually dropped, TCP will attempt to resend it immediately unless

the socket is throttled by TSQ. TSQ reduces the number of TCP

packets in the Tx path by limiting the amount of memory allocated

to the socket, forcing sk->sk_wmem_alloc to not grow above a

given limit. By default, if a socket already has two TSO packets in

flight, the socket will be throttled until at least one of the packets

is freed. Note that TSQ can be viewed as sender buffer regulator. A

socket paused by TSQ will be resumed by a callback function when

a skb is free (i.e., when skb_free function is executed), with the

assumption that if an skb is destroyed, an extra space in the queue

is available. This approach means that when a slot in the queue is

freed, its replacement is notified. This implies that the approach of

reattempting to send a dropped skb immediately can only make

congestion at the Qdisc worse. Our implementation is shown in

Figure 8, where the yellow blocks show function calls we modified.

Probe: Before dev_xmit_skb function pushes the packet into the

queue according to the queueing discipline, it checks whether the

packet should be passed to the next scheduled buffer through our

extended probe API. We implement probe for the three most basic

scheduling algorithms: pfifo_fast as the default qdisc for Linux
interfaces, classful multiqueue (mq) for multiqueue devices, and

token bucket filter (TBF) as a traffic shaper.

tcp_write_xmit

tcp_transmit_skb

dev_xmit_skb

q->enqueue

check q

vfree_skb
full

not full

stop 

kfree_skb

with zD Implementation

paused
flows

resume 
socket

tasklet

resume

update

…...

Figure 8: Flow chart describing TCP/IP stack with zD

Pause: If the probe returns false, instead of resuming the socket,

we mark the socket as stopped and place a pointer of the socket

into a global queue shared by all sockets. Access to the global list

is serialized through a global lock.

Resume: After an skb is consumed by the driver, the global list

dequeues a socket and marks the socket as nonstop. To ensure the

socket is resumed immediately, we use a tasklet to schedule the re-

transmission operation as soon as the CPU allows. We use a tasklet

as a per-CPU variable for performance considerations. As indicated

earlier, the existing TSQ interface for handling flow pause and re-

sume is not very helpful for zD. In particular, TSQ relies on the

sk_wmem_alloc field of struct sock to make decision on throt-

tling the socket. However, our implementation keeps increasing

the value sk_wmem_alloc until has_room returns true. Hence, TSQ
cannot properly decide whether the flow should be throttled. There-

fore, we disable TSQ and implement our flow activation algorithm

discussed in the previous section.

5.2 Hypervisor Implementation
We implement zD in the hypervisor based on the zero-copy virtio
Tx path. Zero-copy transmit is effective in transmitting large pack-

ets between a guest VM to an external network without affecting

throughput, consuming lower CPU and introducing less latency

[11]. The vring, where virtio buffers packets, is a set of single-

producer, single-consumer ring structures that share scatter-gather

I/O between the physical machine and the guest VM. vring keeps

track of two indexes: upend_idx and done_idx. The indexes repre-
sent the last used index for outstanding DMA zerocopy buffers in

the vring and the first used index for DMA done zerocopy buffers,

respectively. The vhost thread pulls packets from the vring and
attempts to enqueue them to the Qdisc.

When a process transmits data, the kernel must format the data

into kernel space buffers. Zero-copymode allows the physical driver

to get the external buffer to directly access memory from the guest

virtio-net driver, hence reducing the number of data copies that

require CPU involvement. In the hypervisor, the vhost process

passes the userspace buffers to the kernel stack skb by pinning the

guest VM user space and allowing direct memory access (DMA)



zD: A Scalable Zero-Drop Network Stack at End Hosts CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

5000 10000 15000
Number of flows

0
2000
4000
6000
8000
10000

Th
ro
ug

hp
ut
 (M

bp
s)

TSQ
zD

(a) Throughput

5000 10000 15000
Number of flows

0
10
20
30
40
50
60
70

CP
U 
ut
ili
za
tio

n 
(%

)

TSQ
zD

(b) VM CPU

5000 10000 15000
Number of flows

0
20
40
60
80
100

CP
U 
ut
ili
za
tio
n 
(%
)

TSQ
zD

(c) vHost CPU

5000 10000 15000
Number of flows

0100
101
102
103
104
105
106
107

Re
tr
an

sm
is
si
on

TSQ
zD

(d) TCP Retransmission

Figure 9: 10Gbps network speed with a qdisc of 100 slots in the hypervisor

for the physical NIC driver. The path of the skb in the hypervisor

is shown in Figure 2. The Tap socket associated with the vhost
process sends out the packet through the Tap device. Packets are

then received by the virtual bridge, and the packet is passed to Qdisc.

Finally, the packet is consumed by the physical NIC. Note that when

vhost pulls a packet from the vring, once the packet is processed,
the kfree_skb callback function will inform the vring to destroy

the packet, whether it was actually transmitted or dropped by Qdisc.

The Probe andResume steps are implemented in this setting in

a very similar fashion to that of the TCP/IP stack. Implementation

of Pause requires handling some corner cases. In particular, if the

Qdisc is full, instead of calling the kfree_skb function to free the

packet and mark the DMA as done, we mark the corresponding

VM as paused, stops polling from its vring. This step also requires

moving the upend_idx back to point to the position of the dropped

packet. A significant difference between the hypervisor setting and

the TCP/IP stack setting is the potential existence of further packets

in-flight from the VM that have been pulled from the vring before

the VM was marked as paused. The situation is further complicated

as those packets can reach the Qdisc and find that it now has

room. This behavior can lead to introduction of out-of-order packet

delivery which can lead to TCP performance degradation. Hence,

all in-flight packets between the vring and the Qdisc are dropped

to avoid such scenarios. Note that moving the upend_idx makes

sure that those packets are retransmitted later. We implement a

callback function to resume polling from the vring when a packet

is passed to the physical NIC driver.

6 EVALUATION
6.1 Experiments Setup
We conduct experiments between two Intel Xeon CPU E5-1620

machines, connected with a 10Gbps link. Both machines have four

cores, with CPU frequency fixed to 3.6GHz. We generate traffic

with neper [2], a network performance measurement tool that can

generate thousands of TCP flows. The TCP flows are generated

inside a virtual machine and are sent to a remote machine. We use

Qemu with KVM enabled as the hypervisor. For a baseline, both VM

and physical machines run Alpine Linux with kernel version 4.14.67.

We run a modified version of that kernel with zD implementation.

In our experiments, we ran into a known issue of vhost where the

Rx path of a VM becomes bottlenecked on the Tx path, because

both are handled with the same thread [32]. The issue is inherent

in the current implementation of virtualization in the Linux kernel,

affecting baselines and zD. The bottleneck is resolved by allocating

more CPU to the receiving path or improving the receive path archi-

tecture [22, 25]. Hence, we perform our experiments in two settings,

one with 6 vCPUs assigned to the virtual machine (experimenting

with a bottleneck-free end host) and another with 1 vCPU assigned

to the virtual machine (exposing the Rx path bottleneck to evaluate

zD under a resource constrained end host). In the first setting, we

tune CPU affinity to assign 5 cores for the Rx path. None of the six

cores hit 100% thus eliminating the issue. The second setting can

still face that issue, however, we find that zD alleviates pressure

on the Tx path, making the performance of the Rx path the main

bottleneck.

The default Tx queue length is set to 1000 in both the VM and

the hypervisor
3
. Experiments are run for 60 seconds each. Our

primary metrics are aggregate throughput of all flows, CPU utiliza-

tion inside the VM, vhost CPU utilization for its pinned core, TCP

retransmissions, and RTT. We track CPU utilization in the virtual

machine using dstat and track CPU utilization of the vhost pro-

cess in the physical machine using top. CPU utilization is recorded

every second. We track the number of TCP retransmissions using

netstat. In all experiments, machines are running only the applica-

tions mentioned here making any CPU performance measurements

correspond with network overhead.

6.2 Overall Performance
We start by reporting the overall performance of zD in a setting

where packet drops can occur in the VM and the hypervisor. These

experiments represent the general case of modern cloud infrastruc-

ture. In particular, we consider three cases: 1) a high bandwidth VM

with a short queue in the hypervisor, where we allocate the whole

10 Gbps to the VM but configure a short queue of 100 slots
4
, 2) a

high bandwidth VM with a long queue in the hypervisor, where

we allocate the whole 10Gbps to the VM and configure a queue of

1000 slots, and 3) a low bandwidth VM with a long queue, where

the hypervisor forces a 1 Gbps limit on the VM in a queue with 1k

slots. In the high bandwidth VM setting, we use a pfifo Qdisc in
the physical machine. In the low bandwidth VM setting we use tbf
to perform rate limiting in the hypervisor. We use the default queue

size 1000 for the qdisc inside the VM. The first setting represents

strict performance requirements (i.e., small processing budget per

packet and high probability of packet drop, as shown in recent work

[18]), while the second and third represent the more general case.

3
Earlier work with larger scale experiments used a queue length of 4000. Note that a

small queue length is also critical to avoid bufferbloat.

4
We choose a small queue length to force congestion in the hypervisor. This emulates

production scenarios where queue lengths are larger but the number of VMs per end

host will also be much larger, making the effective queue length per VM small.



CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Yimeng Zhao, Ahmed Saeed, Ellen Zegura, and Mostafa Ammar

5000 10000 15000
Number of flows

0
2000
4000
6000
8000
10000

Th
ro
ug

hp
ut
 (M

bp
s)

TSQ
zD

(a) Throughput

5000 10000 15000
Number of flows

0
10
20
30
40
50
60
70

CP
U 
ut
ili
za
tio

n 
(%

)

TSQ
zD

(b) VM CPU

5000 10000 15000
Number of flows

0
20
40
60
80
100

CP
U 
ut
ili
za
tio
n 
(%
)

TSQ
zD

(c) vHost CPU

5000 10000 15000
Number of flows

0
2000
4000
6000
8000
10000
12000
14000

Re
tr
an

sm
is
si
on TSQ

zD

(d) TCP Retransmission

Figure 10: 10Gbps network speed with a qdisc of 1000 slots in the hypervisor

5000 10000 15000
Number of flows

0
200
400
600
800
1000
1200

Th
ro
ug

hp
ut
 (M

bp
s)

TSQ
zD

(a) Throughput

5000 10000 15000
Number of flows

0
5

10
15
20
25
30
35
40

CP
U 
ut
ili
za

tio
n 
(%

)

TSQ
zD

(b) VM CPU

5000 10000 15000
Number of flows

0
10
20
30
40
50
60
70
80

CP
U 

ut
ili

za
tio

n 
(%

)

TSQ
zD

(c) vHost CPU

5000 10000 15000
Number of flows

0100
101
102
103
104
105

Re
tr
an

sm
is
si
on

TSQ
zD

(d) TCP Retransmission

Figure 11: 1Gbps network speed with a qdisc of 1000 slots in the hypervisor

10-510-410-310-210-1 100 101
Time (s)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F 
(%

)

TSQ
zD

(a) 10G network with 100 qlen

10-510-410-310-210-1 100 101
Time (s)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

TSQ
zD

(b) 10G network with 1000 qlen

10-510-410-310-210-1 100 101
Time (s)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F 
(%

)

TSQ
zD

(c) 1G network with 1000 qlen

Figure 12: zD reduces the tail of RTT by 100x with both 10G network and 1G network

We vary the number of flows from 500 to 16k and measure through-

put, CPU utilization inside the VM, vhost CPU utilization and TCP

retransmissions. For both settings we measure the RTT at 4k flows.

We focus on cases with a single VM to be able to better analyze the

results. We further restrict the settings in the following sections,

to explain the value of individual zD mechanisms. We allocate 6

vCPUs to the VM to avoid having the Rx path being the bottleneck.

VM with less vCPUs will be evaluated in the micro-benchmark

section.

Figure 9 shows the performance of the standard kernel imple-

mentation and zD for the first setting. zD performs better in terms

of all metrics. In particular, zD achieves around 50% improvement

on the aggregate throughput when there are more than 4k flows

(Figure 9a). Such improvements in throughput come from the elim-

ination of the vhost CPU utilization as the bottleneck (Figure 9c).

zD saves between 40% to 50% of the thread utilization of its CPU

core, which is 100% utilized in the standard implementation, making

it the performance bottleneck and leading to 50% loss in network

throughput. Furthermore, zD reduces tail latency by 80x from 4s

to 0.05s (Figure 12) which is mostly due to reduction of TCP re-

transmissions by 1000x (Figure 9d). There is a slight degradation

in median latency but such slight degradation is generally toler-

able to significantly reduce the tail latency [6]. Note that in this

scenario zD is lightweight as at low loads it consumes less CPU and

achieves better network performance, compared to the standard

kernel implementation.

Figure 10 shows the results for the second case. Compared with

the first setting, TSQ achieves higher throughput and less retrans-

mission because of fewer drops on the hypervisor qdisc. But still,

zD achieves higher throughput, lower VM CPU usage, lower vHost

CPU usage, and fewer TCP retransmissions. We observe there is

less than 100 packet drops in the hypervisor qdisc so the improve-

ment mainly comes from the advantages of using zD in the VM.

The zD vHost CPU usage is lower than that of the standard (TSQ)

kernel when the number of flows is smaller than 16K. When there

are 16K flows, zD has higher vhost CPU usage because it pushes

much more traffic than the standard kernel. The tail latency is

significantly reduced from 8s to 0.05s (Figure 12).

Figure 11 shows the results for the third setting. zD again im-

proves all network metrics. In particular, zD improves throughput

by up to 5% (Figure 11a) and reduces retransmissions by 1000x

(Figure 11d). Most notably, zD reduces tail latency by 45x from 9s to

0.2s (Figure 12). zD also reduces VM CPU utilization by 15%. How-

ever, zD incurs higher vhost CPU cost by up to 40%. The higher

vHost CPU usage results from the extra work of vhost trying to

resend the packets dropped in the physical machine Qdisc instead



zD: A Scalable Zero-Drop Network Stack at End Hosts CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

10002000300040005000
Number of flows

0
2000
4000
6000
8000
10000

Th
ro
ug
hp
ut
 (M
bp
s)

TSQ
Carousel
zD

(a) Throughput

1000 2000 3000 4000 5000
Number of flows

0
20
40
60
80
100

CP
U 
ut
ili
za
tio

n 
(%

)

TSQ
Carousel
zD

(b) VM CPU

1000 2000 3000 4000 5000
Number of flows

0
20
40
60
80
100

CP
U 
ut
ili
za
tio

n 
(%

)

TSQ
Carousel
zD

(c) vHost CPU

10002000300040005000
Number of flows

2000
4000
6000
8000
10000
12000
14000

Re
tr
an

sm
is
si
on TSQ

Carousel
zD

(d) TCP Retransmission

Figure 13: Compared with Carousel, zD achieves higher throughput, lower VM CPU usage, lower vHost CPU usage, and fewer
TCP retransmissions

5000 10000 15000
Number of flows

0
2000
4000
6000
8000
10000

Th
ro
ug

hp
ut
 (M

bp
s)

TSQ
zD

(a) Throughput

5000 10000 15000
Number of flows

102
103
104
105
106

Re
tr
an

sm
is
si
on TSQ

zD

(b) TCP retransmission

Figure 14: Compared with TSQ, zD achieves higher through-
putand and fewer TCP retransmissions when 1 vCPU is as-
signed to the VM.

of relying on the TCP socket in the VM to retransmit the packets.

This shows a tradeoff between network performance and VM CPU

on one side and hypervisor CPU on the other side. We also envision

that userspace stacks can amortize the cost in the hypervisor due

to their busy polling nature [1, 3].

Comparison with Carousel: We use Carousel as a baseline to

examine if the combination of efficient queuing data structure and

TSQ-like backpressure can improve on the performance of standard

Linux Qdiscs. We implemented Carousel in Linux Qdisc using a

more efficient integer priority queue data structure [29] and com-

pared zD with carousel in the 10G network setting with a queue of

1000 slots in the hypervisor. Figure 13 shows that zD outperforms

Carousel in all metrics. While Carousel achieves higher CPU effi-

ciency and a higher throughput compared with TSQ, it does not

fundamentally solve the problem when queue runs out of space

with a large number of flows. As discussed earlier, Carousel relies

on TSQ-like backpressure to limit the number of packets per flow,

which works reasonably well with a small number of flows. Unfor-

tunately, with a large number flows, limiting two packets per flow

can still overflow the queue, leading to performance degradation.

6.3 Microbenchmark
zD with VM-only bottleneck: In the previous section, we looked

at the general case where drops happen in both the VM and the

hypervisor. In this section, we look at cases where there is a single

bottleneck. We focus on the case where drops happen at the VM

because it is easier to test it at large scale (i.e., large number of

flows) compared to the hypervisor which requires scaling to a

large number of VMs. We prevent drops in the hypervisor by a

long unscheduled queue (i.e., pfifo with 1k slots). Note that this

setting is convenient and allows for a better understanding of the

performance of zD because adding more VMs causes drops in the

10-610-510-410-310-210-1 100
Time (s)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F 
(%

)

TSQ
zD

Figure 15: CDF of flow RTT
with hypervisor-only zD.

pfifo mq tbf0
2000
4000
6000
8000

10000

Th
ro
ug

hp
ut
 (M

bp
s)

TSQ zD

Figure 16: Throughput un-
der different Qdiscs

Drop in Qdisc TCP retransmission

TSQ 1.6 × 105 1 × 105

zD 562 110

Table 1: Drops and retransmission in case of hypervisor-
only zD implementation.

hypervisor, which results in a similar scenario as the one we studied

earlier.

We start by looking at the case where the VM is allocated 6 vC-

PUs, thus eliminating the Rx path bottleneck. The result is similar

to what we show in Figure 10. When we use a queue of 1000 slots

in the hypervisor, regardless whether zD is implemented in the hy-

pervisor or not, the performance is similar because the hypervisor

queue is not easily congested due to the high-speed NIC and the

low latency of the networking stack.

To highlight the value of zD, we rerun the experiment in the

setting where 1 vCPU is assigned to the virtual machine. zD’s value

is clear in its impact on throughput as shown in Figure 14a. In

particular, zD can maintain 43% higher throughput at 16k flows.

This significant improvement is mostly due to reduction in retrans-

mission rate (Figure 14b). We find that zD and the standard kernel

exhibit similar CPU performance for both the VM and the vhost
thread when the number of flow is larger than 2k. Both systems

have 100% VM CPU utilization and their vhost CPU utilization was

about 49% for kernel and 43% for zD. The reason of degradation of

kernel implementation moving from allocating 6 vCPUs to a single

vCPU is the higher retransmission rate in the later case. The is

mostly due to the Rx path congestion which leads ACK packets to

be delayed. This cases TCP spurious retransmissions, where senders

timeout and retransmit packets whose ACK is delayed. zD achieves

lower TCP retransmission by reducing the number of interrupts in

VM Tx path reducing the Rx path congestion.

zD with Hypervisor-only bottleneck: Next we quantify the

benefit of zD when it is only implemented in the physical machine.



CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Yimeng Zhao, Ahmed Saeed, Ellen Zegura, and Mostafa Ammar

20 30 40 50 60 70 80
CPU (%)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F 
(%

)

TSQ pfifo
zD pfifo
TSQ mq
zD mq
TSQ tbf
zD tbf

Figure 17: CPU usage in VM under different Qdiscs

1000 2000 3000
Throughput (Mbps)

20
25
30
35
40
45

CP
U 
(%

)

TSQ
zD

Figure 18: CPU usage in VM under light traffic load

We use tbf Qdisc to set a bandwidth limit of 1Gbps in the physical

machine with only 100 flows. This setting forces packet drops to

happen only in the hypervisor. In both settings, the flows achieve

the targetted aggregate rate. However, zD improves RTT by avoid-

ing packet drops. Figure 15 shows the CDF of flow RTT.With vanilla

kernel, the 99.99th percentile is large at around 0.8s. The 99.99th

percentile of zD is less than 0.1s. We present the number of drops in

Qdisc and the number of TCP retransmission for both the standard

kernel and zD in Table 1. zD reduces the TCP retransmission caused

by packet drop in Qdisc by 1000x. Note that CPU utilization is low

and comparable for both implementations due to the limited scale

of the experiment.

Interactionwith different Qdisc:We explore zD performance

under different Qdiscs to show that zD can operate with different

underlying policies. We implement a FIFO policy for the Paused-

flows Queue, which is compatible with all queuing policies used

here. However, each queuing policy requires a different implemen-

tation of the has_room function. We conduct our experiments for

pfifo, mq, and tbf Qdiscs and measure the throughput and CPU

usage inside the VM with 4k flows. The chosen setting is similar to

the case where drops happen only at the VM.

Figure 16 shows that zD achieves around 12% throughput im-

provement with pfifo and around 8% throughput improvement

with tbf. With mq, both zD and the standard kernel have similar

throughput because the instances of vhost process scale as the

number of queues increases. Figure 17 shows the CDF of CPU us-

age in the VM under different Qdiscs. zD reduces the CPU usage

by 7% under pfifo and by 25% under mq but has slightly higher

CPU usage under tbf. The higher CPU usage with tbf results from
the extra work performed by zD to stop and resume the vring. Al-

though dropping packets directly can save hypervisor CPU, the

dropped packets need to be recovered by the TCP retransmission

mechanism thus wasting CPU in the VM.

zD at light loads: zD achieves its goals by adding more coor-

dination between traffic sources and packet queue, which might

cause significant overhead at light loads. However, we find that

this is not the case. To conduct experiments with low loads, we use

10 instances of iperf as traffic generator, each generating 100 TCP

flows. We control the load by setting a rate limit in the application

layer, reducing demand of individual flows. Figure 18 shows effect

of varying the TCP loads on CPU usage in VM. zD has similar CPU

usage as the standard kernel because there is little packet drop in

Qdisc when the traffic load is light. Hence, no coordination between

traffic sources and the packet queue is needed. As the traffic load

increases, getting closer to an aggregate rate of 3 Gbps, the number

of drops in Qdisc also increases and zD starts to outperform the

standard kernel.

7 DISCUSSION
Limitations: We show that zD can improve network and CPU

performance by applying backpressure from the scheduled buffer

to the source buffers. Our work on zD has some modest limitations.

In particular, the overhead of backpressure in the hypervisor can,

in some cases, cause the vhost thread to consume more CPU than a

standard implementation. We believe that with further engineering

this overhead can be eliminated completely. A minor limitation of

our evaluation approach is our focus on simple scheduling policies

in the Paused-flows queue. However, we find that recent work on

efficient packet schedulers in software has thoroughly handled

the issue [29], allowing us to focus more on handling cases of

congestion.

zD for UDP, ingress traffic, and userspace Stacks:We focus

in this paper on the TCP stack in the kernel, mostly due to the

ubiquity of such a setting. As QUIC gains a larger share of Internet

traffic, handling backpressure on UDP flows becomes more im-

portant. Such backpressure is particularly important because UDP

packet drops are physical drops, as UDP does not provide reliability.

This puts more stress on the QUIC stack to recover these losses. We

do not envision any significant engineering or research challenges

extending zD to the UDP stack. The situation is similar for ingress

traffic where drops are caused by NIC buffers overwhelming a ker-

nel buffer. We envision that CPU overhead can be saved if zD is

applied in such scenarios with minimal engineering efforts. The

situation is different for userspace Network Stacks (e.g., DPDK).

While we believe the building blocks of zD can be mapped to such

stacks, we envision that porting it will require engineering effort.

8 CONCLUSION
Packet queuing and scheduling is a standard operation at end hosts.

Congestion of scheduled queues at end hosts typically incurs packet

drops which lead to high CPU cost as well as degradation in net-

work performance. In this paper, we show that by augmenting

existing architectures with three simple mechanisms, CPU and net-

work performance can be significantly improved under high loads,

improving tail latency by 100x. Our work on zD should extend the

scalability of current end-host stacks and motivate revisiting the

queuing architecture in other network elements.

9 ACKNOWLEDGEMENT
This work was funded in part by the National Science Foundation

grant NETS 1816331.



zD: A Scalable Zero-Drop Network Stack at End Hosts CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

REFERENCES
[1] 2014. Intel DPDK: Data plane development kit. https://www.dpdk.org/.

[2] 2016. neper: a Linux networking performance tool. https://github.com/google/

neper.

[3] 2017. BESS: Berkeley Extensible Software Switch. https://github.com/NetSys/

bess/wiki.

[4] Vikas Agarwal, MS Hrishikesh, StephenWKeckler, and Doug Burger. 2000. Clock

rate versus IPC: The end of the road for conventional microarchitectures. In ACM
SIGARCH Computer Architecture News, Vol. 28.

[5] MohammadAlizadeh, Albert Greenberg, David AMaltz, Jitendra Padhye, Parveen

Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2011. Data

center tcp (dctcp). In Prof. of ACM SIGCOMM ’11.
[6] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vahdat,

and Masato Yasuda. 2012. Less is more: trading a little bandwidth for ultra-low

latency in the data center. In Prof. of USENIX NSDI ’12.
[7] W. Almesberger, J. H. Salim, and A. Kuznetsov. 1999. Differentiated services on

Linux. In Proc. of IEEE GLOBECOM ’99.
[8] Vint Cerf, Van Jacobson, Nick Weaver, and Jim Gettys. 2011. BufferBloat: What’s

Wrong with the Internet? ACM Queue 9 (2011).
[9] Yanpei Chen, Rean Griffith, Junda Liu, Randy H Katz, and Anthony D Joseph.

2009. Understanding TCP incast throughput collapse in datacenter networks. In

Proc. of the ACM workshop on Research on enterprise networking (WREN ’09).
[10] Yuchung Cheng and Neal Cardwell. 2016. Making Linux TCP Fast. In Netdev 1.2

Conference.
[11] Hsiao-keng Jerry Chu. 1996. Zero-copy TCP in Solaris. In Proc. of USENIX ATC

’96.
[12] Eric Dumazet and Jonathan Corbet. 2012. TCP small queues. https://lwn.net/

Articles/507065/.

[13] Eric Dumazet and Jonathan Corbet. 2013. TSO sizing and the FQ scheduler.

https://lwn.net/Articles/564978/.

[14] Michael Dalton et al. 2018. Andromeda: Performance, Isolation, and Velocity at

Scale in Cloud Network Virtualization. In Proc. of USENIX NSDI ’18.
[15] David Geer. 2005. Chip makers turn to multicore processors. IEEE Computer 38

(2005).

[16] Keqiang He, Weite Qin, Qiwei Zhang, Wenfei Wu, Junjie Yang, Tian Pan,

Chengchen Hu, Jiao Zhang, Brent Stephens, Aditya Akella, and Ying Zhang.

2017. Low Latency Software Rate Limiters for Cloud Networks. In Proc. of ACM
APNet’17.

[17] Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazières, Balaji Prabhakar,

Albert Greenberg, and Changhoon Kim. 2013. EyeQ: Practical Network Perfor-

mance Isolation at the Edge. In Proc. of USENIX NSDI ’13.
[18] Praveen Kumar, Nandita Dukkipati, Nathan Lewis, Yi Cui, YaogongWang, Chong-

gang Li, Valas Valancius, Jake Adriaens, Steve Gribble, Nate Foster, and Amin

Vahdat. 2019. PicNIC: predictable virtualized NIC. In Proc. of ACM SIGCOMM
’19.

[19] Alexey N. Kuznetsov. 2002. pfifo-tc: PFIFO Qdisc. https://linux.die.net/man/8/

tc-pfifo/.

[20] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,

Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan Yu. 2019.

HPCC: High Precision Congestion Control. In Proc. of ACM SIGCOMM ’19.
[21] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,

Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David Zats.

2015. TIMELY: RTT-based Congestion Control for the Datacenter. In Proc. of
ACM SIGCOMM ’15.

[22] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Balakr-

ishnan. 2019. Shenango: Achieving High CPU Efficiency for Latency-sensitive

Datacenter Workloads. In Proc. of USENIX NSDI ’19.
[23] Ben Pfaff, Justin Pettit, Keith Amidon, Martin Casado, Teemu Koponen, and Scott

Shenker. 2009. Extending networking into the virtualization layer. In Proc. of
ACM HotNets-VIII.

[24] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Raja-

halme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, Keith Amidon, and

Martin Casado. 2015. The Design and Implementation of Open vSwitch. In Proc.
of USENIX NSDI ’15.

[25] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS: Achieving

Low Tail Latency for Microsecond-scale Networked Tasks. In Proc. of ACM SOSP
’17.

[26] Sivasankar Radhakrishnan, Yilong Geng, Vimalkumar Jeyakumar, Abdul Kabbani,

George Porter, and Amin Vahdat. 2014. SENIC: Scalable NIC for End-Host Rate

Limiting. In Proc. of USENIX NSDI ’14.
[27] Rusty Russell. 2008. virtio: towards a de-facto standard for virtual I/O devices.

ACM SIGOPS Operating Systems Review 42 (2008).

[28] Ahmed Saeed, Nandita Dukkipati, Valas Valancius, Terry Lam, Carlo Contavalli,

and Amin Vahdat. 2017. Carousel: Scalable Traffic Shaping at End-Hosts. In Proc.
of ACM SIGCOMM ’17.

[29] Ahmed Saeed, Yimeng Zhao, Nandita Dukkipati, Ellen Zegura, Mostafa Ammar,

Khaled Harras, and Amin Vahdat. 2019. Eiffel: Efficient and Flexible Software

Packet Scheduling. In Proc. of USENIX NSDI ’19.
[30] Vishal Shrivastav. 2019. Fast, Scalable, and Programmable Packet Scheduler in

Hardware. In Proc. of ACM SIGCOMM ’19.
[31] Brent Stephens, Aditya Akella, and Michael Swift. 2019. Loom: Flexible and

Efficient NIC Packet Scheduling. In Prof. of USENIX NSDI ’19.
[32] Jianfeng Tan, Cunming Liang, Huawei Xie, Qian Xu, Jiayu Hu, Heqing Zhu, and

Yuanhan Liu. 2017. VIRTIO-USER: A New Versatile Channel for Kernel-Bypass

Networks. In Proc. of the ACMWorkshop on Kernel-Bypass Networks (KBNets ’17).
[33] M Tsirkin. 2010. vhost-net and virtio-net: Need for Speed. In Proc. KVM Forum.

[34] M Mitchell Waldrop. 2016. The chips are down for Moore’s law. Nature News
530 (2016).

[35] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,

Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and

Ming Zhang. 2015. Congestion Control for Large-Scale RDMA Deployments. In

Proc. of ACM SIGCOMM ’15.

https://www.dpdk.org/
https://github.com/google/neper
https://github.com/google/neper
https://github.com/NetSys/bess/wiki
https://github.com/NetSys/bess/wiki
https://lwn.net/Articles/507065/
https://lwn.net/Articles/507065/
https://lwn.net/Articles/564978/
https://linux.die.net/man/8/tc-pfifo/
https://linux.die.net/man/8/tc-pfifo/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Packet Queuing at End Hosts
	2.2 Types of Packet Drops
	2.3 Cost of Long Queues
	2.4 Cost of Packet Drops
	2.5 Related Work

	3 zD Design Principles
	4 zD Overview
	4.1 Source Buffer Regulator
	4.2 Backpressure Interface
	4.3 Paused-Flows Queue

	5 Implementation
	5.1 TCP/IP Stack Implementation
	5.2 Hypervisor Implementation

	6 Evaluation
	6.1 Experiments Setup
	6.2 Overall Performance
	6.3 Microbenchmark

	7 Discussion
	8 Conclusion
	9 Acknowledgement
	References

